首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A portable UHV-compatible gas aggregation cluster source, capable of depositing clean mass-selected nanoclusters in situ, has been used at synchrotron radiation facilities to study the magnetic behaviour of exposed and Co-coated Fe clusters in the size range 250 to 540 atoms. X-ray magnetic circular dichroism (XMCD) studies of isolated and exposed 250-atom clusters show a 10% enhancement in the spin magnetic moment and a 75% enhancement in the orbital magnetic moment relative to bulk Fe. The spin moment monotonically approaches the bulk value with increasing cluster size but the orbital moment does not measurably decay till the cluster size is above ∼ 400 atoms. The total magnetic moments for the supported particles though higher than the bulk value are less than those measured in free clusters. Coating the deposited particles with Co in situ increases the spin moment by a further 10% producing a total moment per atom close to the free cluster value. At low coverages the deposited clusters are super-paramagnetic at temperatures above 10 K but a magnetic remanence at higher temperature emerges as the cluster density increases and for cluster films with a thickness greater than 50 ?(i.e. 2-3 layers of clusters) the remanence becomes greater than that of an Fe film of the same thickness produced by a conventional deposition source. Thick cluster-assembled film show a strong in-plane anisotropy. Received 14 December 2000  相似文献   

2.
The magnetic properties of 3d-metal clusters significantly differ from bulk behavior and, for small clusters, strongly depend on the number of atoms within each cluster. Such phenomena are caused by a narrowing of electronic states and the high ratio of surface to volume atoms giving rise to enhanced magnetic orbital moments. However, even large Fe nanoparticles (6–12 nm) deposited onto ferromagnetic surfaces show enhanced orbital moments. At a low coverage large iron clusters on a cobalt film exhibit a nearly doubled value for the orbital moments when compared to bulk behaviour. With increasing coverage, the orbital moment is clearly reduced. Additionally, the spin and orbital moments of iron and cobalt in Fe50Co50 alloy clusters with a size of 7.5 nm on a nickel substrate have been investigated. FeCo alloys are known to exhibit very high magnetic moments for soft magnetic materials. PACS 73.22.-f; 75.75.+a; 81.07.-b  相似文献   

3.
We present ab-initio calculations of the electronic structure of small Fe clusters (1–9 atoms) on Ni(001), Ni(111), Cu(001) and Cu(111) surfaces. Our focus is on the spin moments and their dependence on cluster size and shape. We derive a simple quantitative rule that relates the moment of each Fe atom linearly to its coordination number. Thus, for an arbitrary Fe cluster the spin moment of the cluster and of the individual Fe atoms can be readily found if the positions of the atoms are known. PACS 75.75.+a; 75.70.-i; 73.22.-f  相似文献   

4.
The spin-polarized relativistic version of the multiple scattering or the Korringa–Kohn–Rostoker method for electronic structure calculations has been used to study the electronic and magnetic properties of free and supported transition metal clusters. Corresponding results are presented for the spin- and spin–orbit-induced orbital magnetic moments in free Fe and FePt clusters. For both systems a pronounced enhancement is found for the spin as well as for the orbital moments compared with the corresponding bulk value which diminishes in an oscillatory fashion with increasing cluster size. Corresponding investigations on small Co clusters deposited on a Pt (111) surface also revealed a strong dependence of the magnetic properties on the cluster size and shape. A comparison of our theoretical results with available experimental data led to rather satisfying agreement.  相似文献   

5.
Magnetic spin and orbital moments of size-selected free iron cluster ions Fe{n}{+} (n=3-20) have been determined via x-ray magnetic circular dichroism spectroscopy. Iron atoms within the clusters exhibit ferromagnetic coupling except for Fe{13}{+}, where the central atom is coupled antiferromagnetically to the atoms in the surrounding shell. Even in very small clusters, the orbital magnetic moment is strongly quenched and reduced to 5%-25% of its atomic value while the spin magnetic moment remains at 60%-90%. This demonstrates that the formation of bonds quenches orbital angular momenta in homonuclear iron clusters already for coordination numbers much smaller than those of the bulk.  相似文献   

6.
A method for the calculation of the energies of spin modes of surface magnetic clusters on a magnetic surface, using broken translation symmetry in three dimensions (3D), is employed to determine the spin mode energies for a variety of planar clusters. The cluster is considered to be supported on a magnetically ordered substrate such that the localised spins of the cluster and the substrate interact via magnetic exchange. No electronic effects are considered. The analytical approach solves for the 3D evanescent crystal spin field in the bulk and the surface domains around the cluster. This spin field arises owing to the breakdown of magnetic translation symmetry caused by the surface cluster. The analytical approach can be applied to any cluster configuration, underlying the general character of the calculation. In particular, we consider here a 4-, 5-, and 9-atoms planar clusters supported on the surface of a ferromagnetic simple cubic lattice, the spin order being in the direction normal to surface boundary. The method is applied to calculate the spin mode energies of these planar clusters consisting of Gd atoms interacting via Anti-ferromagnetic exchange with an Fe(1 0 0) surface. These results are compared with the calculated energies of the spin modes of the free clusters, and also with those for the same planar clusters when the cluster-substrate exchange is considered hypothetically ferromagnetic.  相似文献   

7.
The size-dependent magnetic properties of small iron clusters deposited on ultrathin nickel films have been studied with circularly polarized synchrotron radiation. With the use of sum rules, orbital and spin magnetic moments have been extracted from x-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably with cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of enhanced orbital moments in small clusters.  相似文献   

8.
9.
The determination of spin and orbital magnetic moments from the free atom to the bulk phase is an intriguing challenge for nanoscience, in particular, since most magnetic recording materials are based on nanostructures. We present temperature-dependent x-ray magnetic circular dichroism measurements of free Co clusters (N=8-22) from which the intrinsic spin and orbital magnetic moments of noninteracting magnetic nanoparticles have been deduced. An exceptionally strong enhancement of the orbital moment is verified for free magnetic clusters which is 4-6 times larger than the bulk value. Our temperature-dependent measurements reveal that the spin orientation along the external magnetic field is nearly saturated at ~20 K and 7 T, while the orbital orientation is clearly not.  相似文献   

10.
The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.  相似文献   

11.
The magnetic properties of 3d-metal clusters significantly differ from bulk behavior. This phenomenon is caused by a narrowing of electronic states and the high ratio of surface to volume atoms giving rise to enhanced magnetic orbital moments. FeCo alloys as soft magnetic materials are known to exhibit very high magnetic moments. The spin and orbital moments of iron and cobalt in size-selected FeCo alloy clusters on non-magnetic as well as magnetized nickel substrates have been investigated by X-ray magnetic circular dichroism with elemental specification. Structural properties were determined by scanning probe measurements. The preformed clusters maintain their original three-dimensional shape with a tendency to a slightly oblate occurrence, which can be explained by particle–support interaction, and do not change to a more or less two-dimensional formation after deposition. PACS 73.22.-f; 75.75.+a; 81.07.-b  相似文献   

12.
The tunneling magnetoresistance (TMR) of granular films prepared by the co-deposition of well-defined ferromagnetic Co clusters and insulating inert-gas matrix atoms has been studied as function of matrix atoms (Kr, Xe), cluster volume fraction, temperature (4–40 K) and cluster size (4.2–5.2 nm). Tunneling samples with resistivities that differ by about five orders of magnitude have a TMR that is found to be independent of matrix and cluster volume fraction, i.e. is independent of both tunneling barrier height and width. All samples show a characteristic TMR(T)-dependence that can be explained by a model which takes into account that magnetic moments at the cluster surface are becoming misaligned with increasing temperature. The fraction of misaligned moments at a fixed temperature is increasing with decreasing clusters size.  相似文献   

13.
Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20–30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients  相似文献   

14.
The electronic structures and the magnetothermal properties of nickel clusters have been investigated. Their effective magnetic moments and specific heat capacities have been calculated assuming that the clusters undergo superparamagnetic relaxation. The average magnetic moments are computed adopting Friedel's model of ferromagnetic clusters. The surface effect and the cluster size effect on the thermodynamic properties of these clusters have been analysed based on the mean field theory approximation. The specific heat capacity of Ni clusters for N=300, where N is the number of atoms in the cluster, shows the peak value at T=550 K and exhibits a steady increase with N. The effective potentials and energy eigen values of the clusters as a function of the number of atoms and radius of the cluster have also been calculated self-consistently using the local density approximation (LDA) of the density functional theory (DFT); this has been performed within the framework of the spherical jellium background model (SJBM). The results of this study have been compared with the Stern-Gerlach experimental data and other theoretical results already reported in literature  相似文献   

15.
We report a structural, electronic and magnetic analysis of minimal MnnS clusters, n = 1–13, from ab initio calculations. Total geometry optimizations were performed by considering compact manganese clusters, doped with a single sulphur atom. The doping was added to the cluster by considering substitution, interstitial and adsorbed positions. To further investigate the influence of the sulphur doping on the magnetic properties of manganese clusters, we performed non collinear magnetic calculations within the local spin density approximation (LSDA) for the exchange-correlation. We find that the electronic properties can be better controlled when the cluster is doped with a sulphur atom, and less size dependent. There are no differences in the magnetic properties of doped and non-doped clusters, except for n=7 and 8, in which the total magnetic moment per atom are smaller in doped clusters.  相似文献   

16.
In this article, various energies and geometries of pure platinum nanoparticles and those of platinum nanoparticles with adsorbed OH were investigated. Fourteen different platinum clusters of 3–40 atoms were studied using spin-unrestricted density functional theory (DFT) with a double numerical plus polarization basis set. This range of sizes gave enough information for establishing the general trends that were the primary goal of the study. Three different shapes of platinum clusters were presented, and the effect of cluster size on binding energy, total energy, and HOMO–LUMO energy gap was investigated. Subsequently, same calculations were performed for those selected Pt clusters with OH adsorbate on the surface. The results show that the stability of both the pure clusters and the clusters with adsorbed OH molecule increases with an increase of cluster size. This fact indicates that direct influence of the size of Pt cluster on the reaction rate is possible, and the understanding of how cluster size would affect binding energy is important. As expected, the effect of cluster size on total energy of molecule was shown to be a linear function independent of cluster type. We also found that optimized (stable) Pt clusters were bigger in size than that of the initial clusters, or clusters with bulk geometry.  相似文献   

17.
卢章辉  曹觉先 《中国物理 B》2008,17(9):3336-3342
Based on the density-functional theory, this paper studies the geometric and magnetic properties of TinO (n=1-9) clusters. The resulting geometries show that the oxygen atom remains on the surface of clusters and does not change the geometry of Tin significantly. The binding energy, second-order energy differences with the size of clusters show that Ti7O cluster is endowed with special stability. The stability of TinO clusters is validated by the recent time-of-flight mass spectra. The total magnetic moments for TinO clusters with n=1-4, 8-9 are constant with 2 and drop to zero at n=5-7. The local magnetic moment and charge partition of each atom, and the density of states are discussed. The magnetic moment of the TinO is clearly dominated by the localized 3d electrons of Ti atoms while the oxygen atom contributes a very small amount of spin in TinO clusters.  相似文献   

18.
The magnetic properties of small YN clusters are studied by using a tight-binding Hubbard Hamiltonian in the unrestricted Hartree-Fock approximation. Several types of cluster geometries are considered in order to see the effects of the size and symmetry of the structures on the magnetic properties. The average magnetic moments are found to be constant over large domains of variations in the interatomic distance, a fact that can be explained by the existing closed shell electronic configurations at least for one spin direction in all our magnetic solutions. Small energy gains upon the onset of magnetization are obtained, which reveals the low stability of the magnetic solutions. Our results contradict the prediction of a magnetic-nonmagnetic transition at a large cluster size (about 90 atoms) for these kinds of systems. Received: 27 April 1998 / Received in final form: 23 June 1998 / Accepted: 17 July 1998  相似文献   

19.
The spin and orbital moments of fcc Fe-Ni cluster alloys are determined within the framework of a d-band Hamiltonian including the spin-orbit coupling non perturbatively. Different sizes (up to 321 atoms), compositions, and chemical configurations (random alloys as well as core-shell arrays of iron and nickel atoms) are considered in order to reveal the crucial role played by local order and stoichiometry on the magnetic moments of the clusters. Interestingly, we have found considerably reduced average magnetizations for Fe-Ni clusters with Fe cores compared to that of the bulk alloy with the same composition. Indeed, in these configurations not only antiparallel arrangements between the local moments of some Fe atoms within the iron core are found, but also the total magnetization of the surface Ni atoms is significantly quenched. On the opposite, the disordered and Ni-core cluster alloys are characterized by high magnetizations resulting from saturated-like contributions from both Ni and Fe atoms, in agreement with recent ab-initio calculations. In general, the local orbital magnetic moments are strongly enhanced with respect to their bulk values. Finally, the variation of the orbital-to-spin moment ratio with the chemical order is discussed.  相似文献   

20.
Magnetizations and magnetic moments of free cobalt clusters Co(N) (12 < N < 200) in a cryogenic (25 K < or = T < or = 100 K) molecular beam were determined from Stern-Gerlach deflections. All clusters preferentially deflect in the direction of the increasing field and the average magnetization resembles the Langevin function for all cluster sizes even at low temperatures. We demonstrate in the avoided crossing model that the average magnetization may result from adiabatic processes of rotating and vibrating clusters in the magnetic field and that spin relaxation is not involved. This resolves a long-standing problem in the interpretation of cluster beam deflection experiments with implications for nanomagnetic systems in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号