首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 ?-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templating dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.  相似文献   

2.
3.
4.
We describe the preparation and structure of the deoxyribonucleoside of 4-fluoro-6-methylbenzimidazole, abbreviated dH (8), which acts as a close shape mimic of the nucleoside deoxyguanosine. The nucleoside is prepared from 2-fluoro-4-methylaniline in seven steps. The X-ray crystal structure reveals a (-sc) glycosidic orientation, an S conformation for the deoxyribose moiety, and quite close shape mimicry of guanine by the substituted benzimidazole. Conformational studies by (1)H NMR and (1)H-(1)H ROESY experiments reveal an S-type conformation and an anti glycosidic orientation in solution (D(2)O), essentially the same as that of deoxyguanosine. Base-stacking studies in a "dangling end" context reveal that the benzimidazole base mimic stacks more strongly than all four natural bases, and more strongly than its counterpart guanine by 1.1 kcal/mol. Base-pairing studies in a 12mer DNA duplex show that, like other nonpolar nucleoside isosteres, H is destabilizing and nonselective when paired opposite natural bases. However, when paired opposite another nonpolar isostere, difluorotoluene (F), a mimic of thymine, the pair exhibits stability approaching that of its natural analogue, a G-T (wobble) base pair. The nucleoside analogue dH will be useful in studies of protein-DNA interactions, and the H-F base pair will serve as a structurally and thermodynamically close mimic of G-T in studies of DNA mismatch repair enzymes.  相似文献   

5.
We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5-9.3 °C in Tm or 1.5-1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1-1 and 2-2 self-pairs and the 1-2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1-1 pair is more stabilizing than a T-A pair. When situated internally, the affinity of the 1-1 pair is the same as, or slightly better than, the analogous T-T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing, and lend new support to the idea that hydrogen bonds in DNA may be more important for specificity of pairing than for affinity. Finally, the study raises the possibility of using these or related base pairs to expand the genetic code beyond the natural A-T and G-C pairs.  相似文献   

6.
The dehydrogenated radicals and anions of Watson-Crick adenine-thymine (A-T) base pair have been investigated by the B3LYP/DZP++ approach. Calculations show that the dehydrogenated radicals and anions have relatively high stabilities compared with the single base adenine and thymine. The electron attachment to the A-T base pair and its derivatives significantly modifies the hydrogen bond interactions and results in remarkable structural changes. As for the dehydrogenated A-T radicals, they have relatively high electron affinities and different dehydrogenation properties with respect to their constituent elements. The relatively low-cost hydrogen eliminations correspond to the (N9)-H (adenine) and (N1)-H (thymine) bonds cleavage. Both dehydrogenation processes have Gibbs free energies of reaction DeltaG degrees of 13.4 and 17.2 kcal mol-1, respectively. The solvent water exhibits significant effect on electron attachment and dehydrogenation properties of the A-T base pair and its derivatives. In the dehydrogenating process, the anionic A-T fragment gradually changes its electronic configuration from pi* to sigma* state, like the single bases adenine and thymine.  相似文献   

7.
Repair glycosylases locate and excise damaged bases from DNA, playing central roles in preservation of the genome and prevention of disease. Two key glycosylases, Fpg and hOGG1, function to remove the mutagenic oxidized base 8-oxoG (OG) from DNA. To investigate the relative contributions of conformational preferences, leaving group ability, enzyme-base hydrogen bonding, and nucleobase shape on damage recognition by these glycosylases, a series of four substituted indole nucleosides, based on the parent OG nonpolar isostere 2Cl-4F-indole, were tested as possible direct substrates of these enzymes in the context of 30 base pair duplexes paired with C. Surprisingly, single-turnover experiments revealed that Fpg-catalyzed base removal activity of two of the nonpolar analogs was superior to the native OG substrate. The hOGG1 glycosylase was also found to catalyze removal of three of the nonpolar analogs, albeit considerably less efficiently than removal of OG. Of note, the analog that was completely resistant to hOGG1-catalyzed excision has a chloro-substituent at the position of NH7 of OG, implicating the importance of recognition of this position in catalysis. Both hOGG1 and Fpg retained high affinity for the duplexes containing the nonpolar isosteres. These studies show that hydrogen bonds between base and enzyme are not needed for efficient damage recognition and repair by Fpg and underscore the importance of facile extrusion from the helix in its damaged base selection. In contrast, damage removal by hOGG1 is sensitive to both hydrogen bonding groups and nucleobase shape. The relative rates of excision of the analogs with the two glycosylases highlight key differences in their mechanisms of damaged base recognition and removal.  相似文献   

8.
The incorporation of synthetic nucleoside analogues into DNA duplexes provides a unique opportunity to probe both structure and function of nucleic acids. We used 1H and 19F NMR and molecular dynamics calculations to determine the solution structures of two similar DNA decamer duplexes, one containing a central G-T mismatched or "wobble" base pair, and one in which the thymine in this base pair is replaced by difluorotoluene (a thymine isostere) creating a G-F pair. Here, we show that the non-hydrogen-bonding G-F pair stacks relatively well into the helix and that the distortions caused by each non-Watson-Crick G-T or G-F base pair are quite localized to a three base pair site around the mismatch. A detailed structural analysis reveals that the absence of hydrogen bonding introduces more dynamic motion into the G-F pair relative to G-T and permits the G-F pair to exhibit stacking and conformational features characteristic of both a Watson-Crick base pair (on the guanine containing strand) and a wobble base pair (on the strand containing the difluorotoluene). We used these results to posit a rationale for recognition and repair of mismatch sites in DNA.  相似文献   

9.
Uracil DNA glycosylase (UNG) locates uracil and its structural congener thymine in the context of duplex DNA using a base flipping mechanism. NMR imino proton exchange measurements were performed on free and UNG-bound DNA duplexes in which a single thymine (T) was paired with a series of adenine analogues (X) capable of forming one, two, or three hydrogen bonds. The base pair opening equilibrium for the free DNA increased 55-fold as the number of hydrogen bonds decreased, but the opening rate constants were nearly the same in the absence and presence of UNG. In contrast, UNG was found to slow the base pair closing rate constants (kcl) compared to each free duplex by a factor of 3- to 23-fold. These findings indicate that regardless of the inherent thermodynamic stability of the TX pair, UNG does not alter the spontaneous opening rate. Instead, the enzyme holds the spontaneously expelled thymine (or uracil) in a transient extrahelical sieving site where it may partition forward into the enzyme active site (uracil) or back into the DNA base stack (thymine).  相似文献   

10.
FTIR spectroscopy has been used to follow the formation of parallel stranded DNA duplexes incorporating isoG or m5isoC bases and determine their base pairing scheme. The results are discussed in comparison with data concerning anti-parallel duplexes with comparable base composition and sequence. In duplexes containing A-T and isoG-C or m5isoC-G base pairs shifts of the thymine C2=O2 and C4=O4 carbonyl stretching vibrations (to lower and higher wavenumbers, respectively, when compared to their positions in classical cis Watson-Crick (WC) base pairs) reflect the formation of trans Watson-Crick A-T base pairs. All carbonyl groups of cytosines, m5isocytosines, guanines and isoguanines are found to be involved in hydrogen bonds, indicative of the formation of isoG-C and m5isoC-G base pairs with three hydrogen bonds. Molecular modeling shows that both structures form regular right handed helices with C2'endo sugar puckers. The role of the water content on the helical conformation of the parallel duplexes has been studied by FTIR and CD. It is found that a conformational transition similar to the B --> A transition observed for anti-parallel duplexes induced by a decrease of the water content of the samples can occur for these parallel duplexes. Their helical flexibility has been evidenced by FTIR studies on hydrated films by the emergence of absorption bands characteristic of A type geometry, in particular by an S-type --> N-type repuckering of the deoxyribose. All sugars in the parallel duplex with alternating d(isoG-A)/d(C-T) sequence can adopt an N-type geometry in low water content conditions. The conformational transition of the parallel hairpin duplex with alternating d(isoG-A)/d(C-T) sequence was followed by circular dichroism in water/trifluoroethanol solutions and its free energy at 0 degrees C was estimated to be 6.6 +/- 0.3 kcal mol(-1).  相似文献   

11.
伍绍贵  冯丹 《物理化学学报》2016,32(5):1282-1288
DNA是大部分生物包括病毒的基因载体。DNA双螺旋链通过A=T和G≡C两种碱基对编码实现对遗传信息的存储。碱基对中的相互作用对DNA双螺旋链的稳定性起到重要作用,直接关系到基因的复制和转录。当前研究中,我们构建了四组不同结构的DNA双螺旋链,进行了总共4.3 μs的分子动力学模拟。通过伞形取样技术计算了DNA双螺旋链中碱基对分离的自由能曲线,并从分子尺度细节和相互作用能对自由能曲线进行解析。在碱基对G≡C的自由能曲线(PMF-PGC)上观察到三个峰,通过监测氢键数目的变化发现分别对应于G≡C三个氢键的断裂;而在A=T的自由能曲线(PMF-PAT)上只出现一个峰,说明A=T的两个氢键在分离过程中几乎同时断裂。PMF-PGC的总能垒比PMF-PAT高,主要是因为G≡C比A=T多一个氢键,更稳定。两条曲线的后段自由能仍然升高,而此时碱基对的氢键已断裂,这是DNA链骨架刚性所导致。我们还研究了碱基对稳定性受相邻碱基对的影响,发现邻近G≡C碱基对会增强A=T的稳定性, C≡G会削弱A=T的稳定性, T=A对A=T的影响较小。  相似文献   

12.
2,4-Difluorotoluene is unusual among hydrofluorocarbons because it is shaped like the DNA base thymine. It was first synthesised as a nucleotide analogue and incorporated into DNA a decade ago. Although it is a nonpolar molecule, it was found to be replicated by DNA polymerase enzymes as if it were thymine. We concluded that replication of DNA base pairs can occur without Watson-Crick hydrogen bonds, and hypothesised that steric effects, rather than these hydrogen bonds, were the main arbiters of DNA replication fidelity. A debate was initiated then, with claims by some that the molecule is polar and forms hydrogen bonds with adenine, thus supporting the hydrogen bonding theory of DNA replication. Here we discuss the evolution of this debate, and reflect on the relevant data that have since come from hundreds of papers and dozens of laboratories. Although discussion on this topic continues, the steric hypothesis for DNA replication is now widely accepted among biochemists, and the changing paradigm has been reflected in textbooks.  相似文献   

13.
We report the synthesis of 1'-deoxy-1'-(benzimidazol-1-yl)-beta-D-ribofuranose 7 and 1'-deoxy-1'-phenyl-beta-D-ribofuranose 2. With these two ribonucleoside analogues we have a set of nine different RNA building blocks in hand, which are isostere to the natural bases. Now it is possible to investigate their duplex stabilizing forces. These forces are hydrogen bonds, base stacking, and solvation. The phosphoramidites of all building blocks were incorporated into a 12mer RNA, and the resulting RNA duplexes were investigated by UV- and CD-spectroscopy. We found that some of the RNA analogues are universal bases. The best universal bases with the lowest destabilization and the smallest discrimination between the natural bases are 1 (B) and 9 (E). On the basis of UV measurements we determined the melting points and the thermodynamic data. We were able to show that there are no hydrogen bonds between the natural bases and the RNA analogues. From thermodynamic data we calculated the contributions for base stacking and solvation of all modified building blocks. Comparison of calculated and measured data of double modified base pairs in 12mer RNA duplexes showed a further duplex stabilizing force in base pairs containing fluorine atoms at the Watson-Crick binding site. This stabilizing force can be defined as C-F.H-C hydrogen bond as is observed in crystal structures of 1'-deoxy-1'-(4-fluorophenyl)-beta-D-ribofuranose.  相似文献   

14.
The thermal stability and conformational dynamics of DNA hairpin and dumbbell conjugates having short A-tract base pair domains connected by tri- or hexa(ethylene glycol) linkers is reported. The formation of stable base-paired A-tract hairpins having oligo(ethylene glycol) linkers requires a minimum of four or five A-T base pairs. The formation of base-paired dumbbells having oligo(ethylene glycol) linkers by means of chemical ligation of nicked dumbbells requires a minimum of two A-T base pairs on either side of the nick. Molecular modeling indicates that the hexa(ethylene glycol) linker is sufficiently long to permit formation of strain-free loop regions and B-DNA base pair domains. In contrast, the tri(ethylene glycol) is too short to permit Watson-Crick base pairing between the bases attached to the linker. The shorter linker distorts the duplex, resulting in fluxional behavior in which the base pairs adjacent to the linker and at the open end of the hairpin dissociate on the nanosecond time scale. The loss of interstrand binding energy caused by these fluctuations leads to a difference of approximately 5 degrees C in melting temperature between EG3 and EG6 hairpins. An analysis of the fluxional behavior of the EG3 adjacent base-pair has been used to study the pathways for base flipping and base stacking, including the identification of rotated base (partially flipped) intermediates that have not been described previously for A-T base pairs.  相似文献   

15.
Three-dimensional (3D) DNA crystals have been envisioned as programmable biomaterial scaffolds for creating ordered arrays of biological and nonbiological molecules. Despite having excellent programmable properties, the linearity of the Watson-Crick B-form duplex imposes limitations on 3D crystal design. Predictable noncanonical base pairing motifs have the potential to serve as junctions to connect linear DNA segments into complex 3D lattices. Here, we designed crystals based on a template structure with parallel-stranded noncanonical base pairs. Depending on pH, the structures we determined contained all but one or two of the designed secondary structure interactions. Surprisingly, a conformational change of the designed Watson-Crick duplex region resulted in crystal packing differences between the predicted and observed structures. However, the designed noncanonical motif was virtually identical to the template when crystals were grown at pH 5.5, highlighting the motif's predictability. At pH 7.0 we observed a structurally similar variation on this motif that contains a previously unobserved C-G?G-C quadruple base pair. We demonstrate that these two variants can interconvert in crystallo in response to pH perturbations. This study spotlights several important considerations in DNA crystal design, describes the first 3D DNA lattice composed of A-DNA helical sheets, and reveals a noncanonical DNA motif that has adaptive features that may be useful for designing dynamic crystals or biomaterial assemblies.  相似文献   

16.
The energies of individual hydrogen bonds (H-bonds) in A-T and G-C Watson-Crick base pairs were calculated according to the natural bond orbital (NBO) analysis of intermolecular interactions. The extent to which individual H-bonds are helpful in holding the two base pairs together was previously investigated quantitatively by a few different approaches, and the results of the present and previous estimations were compared. The method was validated by the determination of the H-bond strength changes in A-T and G-C pairs upon the substitution of the monomer (base) by two cationic substituents; the systems for which the changes were previously anticipated based on the modifications of the H-bonds' distances.  相似文献   

17.
A new type of double-stranded DNA targeting format by formation of a Janus-Wedge (J-W) triple helix is described. The "wedge" residue W1 is used for A-T and T-A base pairs while W2 is used for G-C and C-G base pairs. Both wedge residues are attached to a PNA backbone that is designed to insert the probe strand into double-stranded DNA and base pair with both Watson-Crick faces. To study the stability of such an assembly, we have examined the formation of the J-W triplex with various sequences.  相似文献   

18.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

19.
Exploratory electronic structure calculations have been performed with the CC2 (simplified singles and doubles coupled-cluster) method for two conformers of the adenine (A)-thymine (T) base pair, with emphasis on excited-state proton-transfer reactions. The Watson-Crick conformer and the most stable (in the gas-phase) conformer of the A-T base pair have been considered. The equilibrium geometries of the ground state and of the lowest excited electronic states have been determined with the MP2 (second-order M?ller-Plesset) and CC2 methods, respectively. Vertical and adiabatic excitation energies, oscillator strengths, and dipole moments of the excited states are reported. Of particular relevance for the photochemistry of the A-T base pair are optically dark (1)pipi* states of charge-transfer character. Although rather high in energy at the ground-state equilibrium geometry, these states are substantially lowered in energy by the transfer of a proton, which thus neutralizes the charge separation. A remarkable difference of the energetics of the proton-transfer reaction is predicted for the two tautomers of A-T: in the Watson-Crick conformer, but not in the most stable conformer, a sequence of conical intersections connects the UV-absorbing (1)pipi* state in a barrierless manner with the electronic ground state. These conical intersections allow a very fast deactivation of the potentially reactive excited states in the Watson-Crick conformer. The results provide evidence that the specific hydrogen-bonding pattern of the Watson-Crick conformer endows this structure with a greatly enhanced photostability. This property of the Watson-Crick conformer of A-T may have been essential for the selection of this species as carrier of genetic information in early stages of the biological evolution.  相似文献   

20.
Recently, we reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this regard, we report here the synthesis of a hydroxypyridone-bearing nucleoside and the incorporation of a neutral Cu(2+)-mediated base pair of hydroxypyridone nucleobases (H-Cu-H) in a DNA duplex. When the hydroxypyridone bases are incorporated into the middle of a 15 nucleotide duplex, the duplex displays high thermal stabilization in the presence of equimolar Cu(2+) ions in comparison with a duplex containing an A-T pair in place of the H-H pair. Monitoring temperature dependence of UV-absorption changes verified that a Cu(2+)-mediated base pair is stoichiometrically formed inside the duplex and dissociates upon thermal denaturation at elevated temperature. In addition, EPR and CD studies suggested that the radical site of a Cu(2+) center is formed within the right-handed double-strand structure of the oligonucleotide. The present strategy could be developed for controlled and periodic spacing of neutral metallobase pairs along the helix axis of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号