首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a likelihood analysis using MasterCode of variants of the MSSM in which the soft supersymmetry-breaking parameters are assumed to have universal values at some scale \(M_\mathrm{in}\) below the supersymmetric grand unification scale \(M_\mathrm{GUT}\), as can occur in mirage mediation and other models. In addition to \(M_\mathrm{in}\), such ‘sub-GUT’ models have the 4 parameters of the CMSSM, namely a common gaugino mass \(m_{1/2}\), a common soft supersymmetry-breaking scalar mass \(m_0\), a common trilinear mixing parameter A and the ratio of MSSM Higgs vevs \(\tan \beta \), assuming that the Higgs mixing parameter \(\mu > 0\). We take into account constraints on strongly- and electroweakly-interacting sparticles from \(\sim 36\)/fb of LHC data at 13 TeV and the LUX and 2017 PICO, XENON1T and PandaX-II searches for dark matter scattering, in addition to the previous LHC and dark matter constraints as well as full sets of flavour and electroweak constraints. We find a preference for \(M_\mathrm{in}\sim 10^5\) to \(10^9 \,\, \mathrm {GeV}\), with \(M_\mathrm{in}\sim M_\mathrm{GUT}\) disfavoured by \(\Delta \chi ^2 \sim 3\) due to the \(\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)\) constraint. The lower limits on strongly-interacting sparticles are largely determined by LHC searches, and similar to those in the CMSSM. We find a preference for the LSP to be a Bino or Higgsino with \(m_{\tilde{\chi }^0_{1}} \sim 1 \,\, \mathrm {TeV}\), with annihilation via heavy Higgs bosons H / A and stop coannihilation, or chargino coannihilation, bringing the cold dark matter density into the cosmological range. We find that spin-independent dark matter scattering is likely to be within reach of the planned LUX-Zeplin and XENONnT experiments. We probe the impact of the \((g-2)_\mu \) constraint, finding similar results whether or not it is included.  相似文献   

2.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

3.
We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from \(\sim 36\)/fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the \((g-2)_\mu \) constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses \(M_{1,2,3}\), a common mass for the first-and second-generation squarks \(m_{\tilde{q}}\) and a distinct third-generation squark mass \(m_{\tilde{q}_3}\), a common mass for the first-and second-generation sleptons \(m_{\tilde{\ell }}\) and a distinct third-generation slepton mass \(m_{\tilde{\tau }}\), a common trilinear mixing parameter A, the Higgs mixing parameter \(\mu \), the pseudoscalar Higgs mass \(M_A\) and \(\tan \beta \). In the fit including \((g-2)_\mu \), a Bino-like \(\tilde{\chi }^0_{1}\) is preferred, whereas a Higgsino-like \(\tilde{\chi }^0_{1}\) is mildly favoured when the \((g-2)_\mu \) constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, \(\tilde{\chi }^0_{1}\), into the range indicated by cosmological data. In the fit including \((g-2)_\mu \), coannihilations with \(\tilde{\chi }^0_{2}\) and the Wino-like \(\tilde{\chi }^\pm _{1}\) or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the \(\tilde{\chi }^0_{2}\) and the Higgsino-like \(\tilde{\chi }^\pm _{1}\) or with first- and second-generation squarks may be important when the \((g-2)_\mu \) constraint is dropped. In the two cases, we present \(\chi ^2\) functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the \((g-2)_\mu \) constraint, as well as for discovering electroweakly-interacting sparticles at a future linear \(e^+ e^-\) collider such as the ILC or CLIC.  相似文献   

4.
In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.  相似文献   

5.
We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, \(\tilde{\chi }^0_{1}\), may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces \(m_{\tilde{\chi }^0_{1}} \lesssim 3 \,\, \mathrm {TeV}\) after the inclusion of Sommerfeld enhancement in its annihilations. If most of the cold DM density is provided by the \(\tilde{\chi }^0_{1}\), the measured value of the Higgs mass favours a limited range of \(\tan \beta \sim 5\) (and also for \(\tan \beta \sim 45\) if \(\mu > 0\)) but the scalar mass \(m_0\) is poorly constrained. In the wino-LSP case, \(m_{3/2}\) is constrained to about \(900\,\, \mathrm {TeV}\) and \(m_{\tilde{\chi }^0_{1}}\) to \(2.9\pm 0.1\,\, \mathrm {TeV}\), whereas in the Higgsino-LSP case \(m_{3/2}\) has just a lower limit \(\gtrsim 650\,\, \mathrm {TeV}\) (\(\gtrsim 480\,\, \mathrm {TeV}\)) and \(m_{\tilde{\chi }^0_{1}}\) is constrained to \(1.12 ~(1.13) \pm 0.02\,\, \mathrm {TeV}\) in the \(\mu >0\) (\(\mu <0\)) scenario. In neither case can the anomalous magnetic moment of the muon, \((g-2)_\mu \), be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, though there are some prospects for direct DM detection. On the other hand, if the \(\tilde{\chi }^0_{1}\) contributes only a fraction of the cold DM density, future LHC Open image in new window -based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant, and interference effects enable \(\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)\) to agree with the data better than in the SM in the case of wino-like DM with \(\mu > 0\).  相似文献   

6.
In models with colored particle \(\mathcal {Q}\) that can decay into a dark matter candidate X, the relevant collider process \(pp\rightarrow \mathcal {Q}\bar{\mathcal {Q}}\rightarrow X\bar{X}\,+\,\)jets gives rise to events with significant transverse momentum imbalance. When the masses of \(\mathcal {Q}\) and X are very close, the relevant signature becomes monojet-like, and Large Hadron Collider (LHC) search limits become much less constraining. In this paper, we study the current and anticipated experimental sensitivity to such particles at the High-Luminosity LHC at \(\sqrt{s}=14\) TeV with \(\mathcal {L}=3\) ab\(^{-1}\) of data and the proposed High-Energy LHC at \(\sqrt{s}=27\) TeV with \(\mathcal {L}=15\) ab\(^{-1}\) of data. We estimate the reach for various Lorentz and QCD color representations of \(\mathcal {Q}\). Identifying the nature of \(\mathcal {Q}\) is very important to understanding the physics behind the monojet signature. Therefore, we also study the dependence of the observables built from the \(pp\rightarrow \mathcal {Q}\bar{\mathcal {Q}} + j \) process on \(\mathcal {Q}\) itself. Using the state-of-the-art Monte Carlo suites MadGraph5_aMC@NLO+Pythia8 and Sherpa, we find that when these observables are calculated at NLO in QCD with parton shower matching and multijet merging, the residual theoretical uncertainties are comparable to differences observed when varying the quantum numbers of \(\mathcal {Q}\) itself. We find, however, that the precision achievable with NNLO calculations, where available, can resolve this dilemma.  相似文献   

7.
O. Azzolini  M. T. Barrera  J. W. Beeman  F. Bellini  M. Beretta  M. Biassoni  E. Bossio  C. Brofferio  C. Bucci  L. Canonica  S. Capelli  L. Cardani  P. Carniti  N. Casali  L. Cassina  M. Clemenza  O. Cremonesi  A. Cruciani  A. D’Addabbo  I. Dafinei  S. Di Domizio  F. Ferroni  L. Gironi  A. Giuliani  P. Gorla  C. Gotti  G. Keppel  M. Martinez  S. Morganti  S. Nagorny  M. Nastasi  S. Nisi  C. Nones  D. Orlandi  L. Pagnanini  M. Pallavicini  V. Palmieri  L. Pattavina  M. Pavan  G. Pessina  V. Pettinacci  S. Pirro  S. Pozzi  E. Previtali  A. Puiu  C. Rusconi  K. Schäffner  C. Tomei  M. Vignati  A. Zolotarova 《The European Physical Journal C - Particles and Fields》2018,78(11):888
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95\(\%\) enriched in \(^{82}\)Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of \(^{82}\)Se into the 0\(_1^+\), 2\(_1^+\) and 2\(_2^+\) excited states of \(^{82}\)Kr with an exposure of 5.74 kg\(\cdot \)yr (2.24\(\times \)10\(^{25}\) emitters\(\cdot \)yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{0_1^+}\))8.55\(\times \)10\(^{-24}\) yr\(^{-1}\), \(\varGamma \) (\(^{82}\) Se \(\rightarrow ^{82}\) Kr \(_{2_1^+}\))\(\,{<}\,6.25 \,{\times }\,10^{-24}\) yr\(^{-1}\), \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{2_2^+}\))8.25\(\times \)10\(^{-24}\) yr\(^{-1}\) (90\(\%\) credible interval).  相似文献   

8.
The \(B\rightarrow D\) transition form factor (TFF) \(f^{B\rightarrow D}_+(q^2)\) is determined mainly by the D-meson leading-twist distribution amplitude (DA) , \(\phi _{2;D}\), if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA \(\phi _{2;D}\) and its impact on \(f^{B\rightarrow D}_+(q^2)\). In this paper, we calculate the moments of \(\phi _{2;D}\) with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments \(\left\langle \xi ^n\right\rangle _D\) up to fourth order and up to dimension-six condensates are presented. At the scale \(\mu = 2 \,\mathrm{GeV}\), the values of the first four moments are: \(\left\langle \xi ^1\right\rangle _D = -0.418^{+0.021}_{-0.022}\), \(\left\langle \xi ^2\right\rangle _D = 0.289^{+0.023}_{-0.022}\), \(\left\langle \xi ^3\right\rangle _D = -0.178 \pm 0.010\) and \(\left\langle \xi ^4\right\rangle _D = 0.142^{+0.013}_{-0.012}\). Basing on the values of \(\left\langle \xi ^n\right\rangle _D(n=1,2,3,4)\), a better model of \(\phi _{2;D}\) is constructed. Applying this model for the TFF \(f^{B\rightarrow D}_+(q^2)\) under the light cone sum rules, we obtain \(f^{B\rightarrow D}_+(0) = 0.673^{+0.038}_{-0.041}\) and \(f^{B\rightarrow D}_+(q^2_{\mathrm{max}}) = 1.117^{+0.051}_{-0.054}\). The uncertainty of \(f^{B\rightarrow D}_+(q^2)\) from \(\phi _{2;D}\) is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio \(\mathcal {B}(B\rightarrow Dl\bar{\nu }_l)\) is calculated, which is consistent with experimental data.  相似文献   

9.
We consider the scattering of kinks of the sinh-deformed \(\varphi ^4\) model, which is obtained from the well-known \(\varphi ^4\) model by means of the deformation procedure. Depending on the initial velocity \(v_\mathrm {in}\) of the colliding kinks, different collision scenarios are realized. There is a critical value \(v_\mathrm {cr}\) of the initial velocity, which separates the regime of reflection (at \(v_\mathrm {in}>v_\mathrm {cr}\)) and that of a complicated interaction (at \(v_\mathrm {in}<v_\mathrm {cr}\)) with kinks’ capture and escape windows. Besides that, at \(v_\mathrm {in}\) below \(v_\mathrm {cr}\) we observe the formation of a bound state of two oscillons, as well as their escape at some values of \(v_\mathrm {in}\).  相似文献   

10.
The model of holographic dark energy in which dark energy interacts with dark matter is investigated in this paper. In particular, we consider the interacting holographic dark energy model in the context of a perturbed universe, which was never investigated in the literature. To avoid the large-scale instability problem in the interacting dark energy cosmology, we employ the generalized version of the parameterized post-Friedmann approach to treating the dark energy perturbations in the model. We use the current observational data to constrain the model. Since the cosmological perturbations are considered in the model, we can then employ the redshift-space distortions (RSD) measurements to constrain the model, in addition to the use of the measurements of expansion history, which has never been done in the literature. We find that, for both the cases with \(Q=\beta H\rho _\mathrm{c}\) and with \(Q=\beta H_0\rho _\mathrm{c}\), the interacting holographic dark energy model is more favored by the current data, compared to the holographic dark energy model without interaction. It is also found that, with the help of the RSD data, a positive coupling \(\beta \) can be detected at the \(2.95\sigma \) statistical significance for the case of \(Q=\beta H_0\rho _\mathrm{c}\).  相似文献   

11.
We study the CP-violation effects from two types of neutrino mass matrices with (i) \((M_\nu )_{ee}=0\), and (ii) \((M_\nu )_{ee}=(M_\nu )_{e\mu }=0\), which can be realized by the high-dimensional lepton number violating operators \(\bar{\ell }_R^c\gamma ^\mu L_L (D_\mu \Phi )\Phi ^2\) and \(\bar{\ell }_R^c l_R (D_\mu {\Phi })^2\Phi ^2\), respectively. In (i), the neutrino mass spectrum is in the normal ordering with the lightest neutrino mass within the range \(0.002\,\mathrm{eV}\lesssim m_0\lesssim 0.007\,\mathrm{eV}\). Furthermore, for a given value of \(m_0\), there are two solutions for the two Majorana phases \(\alpha _{21}\) and \(\alpha _{31}\), whereas the Dirac phase \(\delta \) is arbitrary. For (ii), the parameters of \(m_0\), \(\delta \), \(\alpha _{21}\), and \(\alpha _{31}\) can be completely determined. We calculate the CP-violating asymmetries in neutrino–antineutrino oscillations for both mass textures of (i) and (ii), which are closely related to the CP-violating Majorana phases.  相似文献   

12.
13.
We investigate the following questions: Given a measure \(\mu _\Lambda \) on configurations on a subset \(\Lambda \) of a lattice \(\mathbb {L}\), where a configuration is an element of \(\Omega ^\Lambda \) for some fixed set \(\Omega \), does there exist a measure \(\mu \) on configurations on all of \(\mathbb {L}\), invariant under some specified symmetry group of \(\mathbb {L}\), such that \(\mu _\Lambda \) is its marginal on configurations on \(\Lambda \)? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which \(\mathbb {L}=\mathbb {Z}^d\) and the symmetries are the translations. For the case in which \(\Lambda \) is an interval in \(\mathbb {Z}\) we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which \(\mathbb {L}\) is the Bethe lattice. On \(\mathbb {Z}\) we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When \(\Lambda \subset \mathbb {Z}\) is not an interval, or when \(\Lambda \subset \mathbb {Z}^d\) with \(d>1\), the LTI condition is necessary but not sufficient for extendibility. For \(\mathbb {Z}^d\) with \(d>1\), extendibility is in some sense undecidable.  相似文献   

14.
Quantum analogue of stabilised forced oscillations around an unstable equilibrium position is explored by solving the non-stationary Schrödinger equation (NSE) of the inverted harmonic oscillator (IHO) driven periodically by spatial uniform field of frequency \(\Omega \), amplitude \(F_{0}\) and phase \(\phi \), i.e. the system with the Hamiltonian of \(\hat{{H}}=(\hat{{p}}^{2}/2m)-(m\omega ^{2}x^{2}/2)-F_0 x\sin \) \(\left( {\Omega t+\phi } \right) \). The NSE has been solved both analytically and numerically by Maple 15 in dimensionless variables \(\xi = x\sqrt{m\omega /\hbar }\hbox {, }f_0 =F_0 /\omega \sqrt{\hbar m\omega }\) and \(\tau =\omega t\). The initial condition (IC) has been specified by the wave function (w.f.) of a generalised Gaussian type which suits well the corresponding quantum IC operator. The solution obtained demonstrates the non-monotonous behaviour of the coordinate spreading \(\sigma \left( \tau \right) \hbox { =}\sqrt{\big ( {\overline{\Delta \xi ^{2}\big ( \tau \big )} } \big )}\) which decreases first from quite macroscopic values of \(\sigma _{0} =2^{12,\ldots ,25}\) to minimal one of \(\sim \!(1/\sqrt{2})\) at times \(\tau <\tau _0 =0.125\ln \!\left( {16\sigma _0^4 +1} \right) \) and then grows back unlimitedly. For certain phases \(\phi \) depending on the \(\Omega /\omega \) ratio and \(n=\log _2\!\sigma _0 \), the mass centre of the packet \(\xi _{\mathrm {av}}( \tau )= \overline{\hat{{x}}(\tau )} \cdot \sqrt{m\omega /\hbar }\) delays approximately two natural ‘periods’ \(\sim \!(4\pi /\omega )\) in the area of the stationary point and then escapes to ‘\(+\)’ or ‘?’ infinity in a bifurcating way.  For ‘resonant’ \(\Omega =\omega \), the bifurcation phases \(\phi \) fit well with the regression formula of Fermi–Dirac type of argument n with their asymptotic \(\phi ( {\Omega ,n\rightarrow \infty } )\) obeying the classical formula \(\phi _{\mathrm {cl}} ( \Omega )=-\hbox {arctg} \, \Omega \) for initial energy \(E = 0\) in the wide range of \(\Omega =2^{-4},...,2^{7}\).  相似文献   

15.
Photoreflectance spectra have been measured on the chalcopyrite semiconductor silver indium disulfide (\(\hbox {AgInS}_{2}\)) for light polarization \({\varvec{E}}\) perpendicular (\({\varvec{E}} \bot {c}\)) and parallel to the c-axis (\({\varvec{E}} \vert \vert {c}\)) at temperature between 10 and 300 K. The measured photoreflectance spectra revealed distinct structures at 1.8–2.1 eV. The lowest bandgap energies \(E_{0A}\), \(E_{0B}\), and \(E_{0C}\) of \(\hbox {AgInS}_{2}\) show unusual temperature dependence at low temperatures (\(\le\)140 K). The \(E_{0\alpha }\) (\(\alpha =A, B, C\)) is found to increase with increasing temperature from 10 to \(\sim\)140 K and decreases with a further increase in temperature. This result has been successfully explained by taking into account the effects of thermal expansion and electron–phonon interaction. The spin–orbit and crystal-field splitting parameters of \(\hbox {AgInS}_{2}\) are determined to be \(\Delta _{{\mathrm{so}}}=38\) meV and \(\Delta _{{\mathrm{cr}}}=-168\) meV at T = 10 K, respectively, and are discussed from an aspect of the electronic energy band structure consequences. The temperature dependence of spin–orbit and crystal-field splitting parameters of \(\hbox {AgInS}_{2}\) was also presented.  相似文献   

16.
Consider the following coverage model on \(\mathbb {N}\), for each site \(i \in \mathbb {N}\) associate a pair \((\xi _i, R_i)\) where \((\xi _i)_{i \ge 0}\) is a 1-dimensional undelayed discrete renewal point process and \((R_i)_{i \ge 0}\) is an i.i.d. sequence of \(\mathbb {N}\)-valued random variables. At each site where \(\xi _i=1\) start an interval of length \(R_i\). Coverage occurs if every site of \(\mathbb {N}\) is covered by some interval. We obtain sharp conditions for both, positive and null probability of coverage. As corollaries, we extend results of the literature of rumor processes and discrete one-dimensional Boolean percolation.  相似文献   

17.
In this work we study a phenomenological non-gravitational interaction between dark matter and dark energy. The scenario studied in this work extends the usual interaction model proportional to the derivative of the dark component density adding to the coupling a non-linear term of the form \(Q = \rho '/3(\alpha + \beta \rho _{Dark})\) This dark sector interaction model could be interpreted as a particular case of a running vacuum model of the type \(\Lambda (H) = n_0 + n_1 H^2 + n_2 H^4\) in which the vacuum decays into dark matter. For a flat FRW Universe filled with dark energy, dark matter and decoupled baryonic matter and radiation we calculate the energy density evolution equations of the dark sector and solve them. The different sign combinations of the two parameters of the model show clear qualitative different cosmological scenarios, from basic cosmological insights we discard some of them. The linear scalar perturbation equations of the dark matter were calculated. Using the CAMB code we calculate the CMB and matter power spectra for some values of the parameters \(\alpha \) and \(\beta \) and compare it with \(\Lambda \)CDM. The model modify mainly the lower multipoles of the CMB power spectrum remaining almost the same the high ones. The matter power spectrum for low wave numbers is not modified by the interaction but after the maximum it is clearly different. Using observational data from Planck, and various galaxy surveys we obtain the constraints of the parameters, the best fit values obtained are the combinations \(\alpha = (3.7 \pm 7 )\times 10^{-4} \), \(-\,(1.5\times 10^{-5}\, \mathrm{eV}^{-1})^{4} \ll \beta < (0.07\,\mathrm{eV}^{-1})^4\).  相似文献   

18.
In 2002, two neutrino mixing ansatze having trimaximally mixed middle (\(\nu _2\)) columns, namely tri-chi-maximal mixing (\(\text {T}\chi \text {M}\)) and tri-phi-maximal mixing (\(\text {T}\phi \text {M}\)), were proposed. In 2012, it was shown that \(\text {T}\chi \text {M}\) with \(\chi =\pm \,\frac{\pi }{16}\) as well as \(\text {T}\phi \text {M}\) with \(\phi = \pm \,\frac{\pi }{16}\) leads to the solution, \(\sin ^2 \theta _{13} = \frac{2}{3} \sin ^2 \frac{\pi }{16}\), consistent with the latest measurements of the reactor mixing angle, \(\theta _{13}\). To obtain \(\text {T}\chi \text {M}_{(\chi =\pm \,\frac{\pi }{16})}\) and \(\text {T}\phi \text {M}_{(\phi =\pm \,\frac{\pi }{16})}\), the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, \(m_1:m_2:m_3=\frac{\left( 2+\sqrt{2}\right) }{1+\sqrt{2(2+\sqrt{2})}}:1:\frac{\left( 2+\sqrt{2}\right) }{-1+\sqrt{2(2+\sqrt{2})}}\). In this paper we construct a flavour model based on the discrete group \(\varSigma (72\times 3)\) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric \(3\times 3\) matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of \(\varSigma (72\times 3)\). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.  相似文献   

19.
In this paper, in order to probe the spectator-scattering and weak annihilation contributions in charmless \(B_s\rightarrow VV\) (where V stands for a light vector meson) decays, we perform the \(\chi ^2\)-analyses for the endpoint parameters within the QCD factorization framework, under the constraints from the measured \(\bar{B}_{s}\rightarrow \) \(\rho ^0\phi \), \(\phi K^{*0}\), \(\phi \phi \) and \(K^{*0}\bar{K}^{*0}\) decays. The fitted results indicate that the endpoint parameters in the factorizable and nonfactorizable annihilation topologies are non-universal, which is also favored by the charmless \(B\rightarrow PP\) and PV (where P stands for a light pseudo-scalar meson) decays observed in previous work. Moreover, the abnormal polarization fractions \(f_{L,\bot }(\bar{B}_{s}\rightarrow K^{*0}\bar{K}^{*0})=(20.1\pm 7.0)\%,(58.4\pm 8.5)\%\) measured by the LHCb collaboration can be reconciled through the weak annihilation corrections. However, the branching ratio of \(\bar{B}_{s}\rightarrow \phi K^{*0}\) decay exhibits a tension between the data and theoretical result, which dominates the contributions to \(\chi _\mathrm{min}^2\) in the fits. Using the fitted endpoint parameters, we update the theoretical results for the charmless \(B_s\rightarrow VV\) decays, which will be further tested by the LHCb and Belle-II experiments in the near future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号