首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of the motion of electrically charged particles in the background of the Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41–48, 2013; Serb Astron 190:41, 2015) for time-like geodesics.  相似文献   

2.
In this paper the Lagrangian density of a purely kinetic k-essence model that describes the behavior of dark energy described by four parameterized equations of state proposed by Cooray and Huterer (Astrophys J 513:L95, 1999), Zhang and Wu (Mod Phys Lett A 27:1250030, 2012), Linder (Phys Rev Lett 90:091301, 2003), Efstathiou (Mon Not R Astron Soc 310:842, 2000), and Feng and Lu (J Cosmol Astropart Phys 1111:34, 2011) has been reconstructed. This reconstruction is performed using the method outlined by de Putter and Linder (Astropart Phys 28:263, 2007), which makes it possible to solve the equations that relate the Lagrangian density of the k-essence with the given equation of state (EoS) numerically. Finally, we discuss the observational constraints for the models based on 1049 SNIa data points from the Pantheon data set compiled by Scolnic et al. (Astrophys J 859(2):101, 2018)  相似文献   

3.
One of the problems in the catalogue of solutions to the vacuum solutions of the Einstein equations is the dearth of solutions to what is known as the type N twisting metric. Were it to be found in its general form it would then, according to the Peeling theorem of Sachs (Proc R Soc Lond A270:103, 1962), describe the asymptotic gravitational field of an isolated source. The only known mathematical solution was found by Hauser (Phys Rev Lett 33:1112, 1974) and (Phys Rev Lett 33:1525, 1974). In this article the general equations are reduced to one third order complex equation for one complex variable plus one simple condition.  相似文献   

4.
We prove local existence for classical solutions of a free boundary problem which arises in one of the biological selection models proposed by Brunet and Derrida, (Phys. Rev. E 56, 2597D2604, 1997) and Durrett and Remenik, (Ann. Probab. 39, 2043–2078, 2011). The problem we consider describes the limit evolution of branching brownian particles on the line with death of the leftmost particle at each creation time as studied in De Masi et al. (2017). We use extensively results in Cannon (1984) and Fasano (2008).  相似文献   

5.
Recently I published an article in this journal entitled “Less interpretation and more decoherence in quantum gravity and inflationary cosmology” (Crull in Found Phys 45(9):1019–1045, 2015). This article generated responses from three pairs of authors: Vassallo and Esfeld (Found Phys 45(12):1533–1536, 2015), Okon and Sudarsky (Found Phys 46(7):852–879, 2016) and Fortin and Lombardi (Found Phys, 2017). In what follows, I reply to the criticisms raised by these authors.  相似文献   

6.
We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649–696, 2011; Commun Math Phys 289(1):311–334, 2009) and Enaud and Derrida (J Stat Phys 114:537–562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843–885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.  相似文献   

7.
In two papers Franz et al. proved bounds for the free energy of diluted random constraints satisfaction problems, for a Poisson degree distribution (Franz and Leone in J Stat Phys 111(3–4):535–564, 2003) and a general distribution (Franz et al. in J Phys A 36(43), 10967, 2003). Panchenko and Talagrand (Probab Theo Relat Fields 130(3):319–336, 2004) simplified the proof and generalized the result of Franz and Leone (J Stat Phys 111(3–4):535–564, 2003) for the Poisson case. We provide a new proof for the general degree distribution case and as a corollary, we obtain new bounds for the size of the largest independent set (also known as hard core model) in a large random regular graph. Our proof uses a combinatorial interpolation based on biased random walks (Salez in Combin Probab Comput 25(03):436–447, 2016) and allows to bypass the arguments in Franz et al. (J Phys A 36(43):10967, 2003) based on the study of the Sherrington–Kirkpatrick (SK) model.  相似文献   

8.
We establish new lower bounds for the convergence radius of the Mayer series and the Virial series of a continuous particle system interacting via a stable and tempered pair potential. Our bounds considerably improve those given by Penrose (J Math Phys 4:1312, 1963) and Ruelle (Ann Phys 5:109–120, 1963) for the Mayer series and by Lebowitz and Penrose (J Math Phys 7:841–847, 1964) for the Virial series. To get our results, we exploit the tree-graph identity given by Penrose (Statistical mechanics: foundations and applications. Benjamin, New York, 1967) using a new partition scheme based on minimum spanning trees.  相似文献   

9.
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721–730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891–918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á  la Heyde (J Stat Phys 27:721–730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891–918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.  相似文献   

10.
We show how to extract Cardy’s Formula for a general class of domains given the requisite interior analyticity statement. This is accomplished by a careful study of the interplay between discretization schemes and extraction of limiting boundary values. Of particular importance to the companion work (Binder et al. in J. Stat. Phys., 2010) we establish these results for slit domains and for the critical percolation models introduced in Chayes and Lei (Rev. Math. Phys. 19:511–565, 2007).  相似文献   

11.
In this note, we prove the following inequality: \({2\Vert\Delta_{\eta\varphi}^{\frac s2}\xi_{\varphi}\Vert ^2 \ge \varphi(1)+\eta(1)- \vert\varphi-\eta\vert(1)}\) , where \({\varphi}\) and η are positive normal linear functionals over a von Neumann algebra. This is a generalization of the famous Powers–Størmer inequality (Powers and Størmer proved the inequality for \({L({\mathcal H})}\) in Commun Math Phys 16:1–33, 1970; Takesaki in Theory of Operator Algebras II, 2001). For matrices, this inequality was proven by Audenaert et al. (Phys Rev Lett 98:160501, 2007). We extend their result to general von Neumann algebras.  相似文献   

12.
Based on the genuine four-particle entangled state (Yeo and Chua in Phys. Rev. Lett. 96:060502, 2006) and the ping-pong protocol (Boström and Felbinger in Phys. Rev. Lett. 89:187902, 2002), an efficient quantum dialogue scheme is proposed. Since some subtle methods are employed, the information leakage doesn’t exist in this scheme. There are two security-check processes in this scheme, one is accomplished by using the four-particle entanglement pairs and the other by using the d particles.  相似文献   

13.
In this paper we study a so-called separatrix map introduced by Zaslavskii–Filonenko (Sov Phys JETP 27:851–857, 1968) and studied by Treschev (Physica D 116(1–2):21–43, 1998; J Nonlinear Sci 12(1):27–58, 2002), Piftankin (Nonlinearity (19):2617–2644, 2006) Piftankin and Treshchëv (Uspekhi Mat Nauk 62(2(374)):3–108, 2007). We derive a second order expansion of this map for trigonometric perturbations. In Castejon et al. (Random iteration of maps of a cylinder and diffusive behavior. Preprint available at arXiv:1501.03319, 2015), Guardia and Kaloshin (Stochastic diffusive behavior through big gaps in a priori unstable systems (in preparation), 2015), and Kaloshin et al. (Normally Hyperbolic Invariant Laminations and diffusive behavior for the generalized Arnold example away from resonances. Preprint available at http://www.terpconnect.umd.edu/vkaloshi/, 2015), applying the results of the present paper, we describe a class of nearly integrable deterministic systems with stochastic diffusive behavior.  相似文献   

14.
A scenario of leptogenesis was introduced in Alexander et al. (Phys Rev Lett 96:081301, 2006) which works during inflationary period within standard model of particle physics setup. In this scenario lepton number is created by the gravitational chiral anomaly which has a non-zero expectation value for models of inflation driven by pseudoscalar field(s). Here, we observe that models of inflation involving non-Abelian gauge fields, e.g. the chromo-natural inflation (Adshead and Wyman in Phys Rev Lett 108:261302, 2012) or the gauge-flation (Maleknejad and Sheikh-Jabbari in Phys Lett B 723:224, 2013. arXiv:1102.1513 [hep-ph]), have a parity-violating tensor mode (graviton) spectrum and naturally lead to a non-vanishing expectation value for the gravitational chiral anomaly. Therefore, one has a natural leptogenesis scenario associated with these inflationary setups, inflato-natural leptogenesis. We argue that the observed value of baryon-to-photon number density can be explained in a natural range of parameters in these models.  相似文献   

15.
In the field of condensed matter physics, specific heat measurements can be considered as a pivotal experimental technique for characterizing the fundamental excitations involved in a certain phase transition. Indeed, phase transitions involving spin (de Souza et al. Phys. B Condens. Matter 404, 494 (2009) and Manna et al. Phys. Rev. Lett. 104, 016403 (2010)), charge (Pregelj et al. Phys. Rev. B 82, 144438 (2010)), lattice (Jesche et al. Phys. Rev. B 81, 134525 (2010)) (phonons) and orbital degrees of freedom, the interplay between ferromagnetism and superconductivity (Jesche et al. Phys. Rev. B 86, 020501 (2012)), Schottky-like anomalies in doped compounds (Lagos et al. Phys. C Supercond. 309, 170 (1998)), electronic levels in finite correlated systems (Macedo and Lagos J. Magn. Magn. Mater. 226, 105 (2001)), among other features, can be captured by means of high-resolution calorimetry. Furthermore, the entropy change associated with a first-order phase transition, no matter its nature, can be directly obtained upon integrating the specific heat over T, i.e., C(T)/T, in the temperature range of interest. Here, we report on a detailed analysis of the two-peak specific heat anomalies observed in several materials. Employing a simple multilevel model, varying the spacing between the energy levels Δi = (Ei?E0) and the degeneracy of each energy level gi, we derive the required conditions for the appearance of such anomalies. Our findings indicate that a ratio of \({\Delta }_{2}/{\Delta }_{1}\thickapprox \) 10 between the energy levels and a high degeneracy of one of the energy levels define the two-peaks regime in the specific heat. Our approach accurately matches recent experimental results. Furthermore, using a mean-field approach, we calculate the specific heat of a degenerate Schottky-like system undergoing a ferromagnetic (FM) phase transition. Our results reveal that as the degeneracy is increased the Schottky maximum in the specific heat becomes narrow while the peak associated with the FM transition remains unaffected.  相似文献   

16.
We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297–311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697–721, 1998) using Fredholm determinant representations of the correlation function and Wiener–Hopf approximation results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058–1092, 1977).  相似文献   

17.
We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter \(w_q\). For all \(w_q\), we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner–Nordström black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated.  相似文献   

18.
David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D’Ariano et al., 2017) and of free quantum field theory (D’Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called “relativistic regime” of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.  相似文献   

19.
Recently, Li et al. (Int. J. Theor. Phys. 53(9), 2923–2930 (2014)) presented the concrete representation of density matrix of symmetric quantum states . Moreover , according to this concrete representation of the density matrix for symmetric quantum states, Li et al. (Int. J. Theor. Phys. 53(9), 2923–2930 (2014)) have established Theorem 4.1. In this Comment, we would like to point out that Theorem 4.1 given by Li et al. (Int. J. Theor. Phys. 53(9), 2923–2930 (2014)) is incorrect in general.  相似文献   

20.
We consider the monomer–dimer model on weighted graphs embedded in surfaces with boundary, with the restriction that only monomers located on the boundary are allowed. We give a Pfaffian formula for the corresponding partition function, which generalises the one obtained by Giuliani et al. (J Stat Phys 163(2):211–238, 2016) for graphs embedded in the disc. Our proof is based on an extension of a bijective method mentioned in Giuliani et al. (2016), together with the Pfaffian formula for the dimer partition function of Cimasoni–Reshetikhin (Commun Math Phys 275(1):187–208, 2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号