首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Angloher  P. Bauer  A. Bento  C. Bucci  L. Canonica  X. Defay  A. Erb  F. v. Feilitzsch  N. Ferreiro Iachellini  P. Gorla  A. Gütlein  D. Hauff  J. Jochum  M. Kiefer  H. Kluck  H. Kraus  J.-C. Lanfranchi  A. Langenkämper  J. Loebell  M. Mancuso  E. Mondragon  A. Münster  L. Oberauer  C. Pagliarone  F. Petricca  W. Potzel  F. Pröbst  R. Puig  F. Reindl  J. Rothe  K. Schäffner  J. Schieck  S. Schönert  W. Seidel  M. Stahlberg  L. Stodolsky  C. Strandhagen  R. Strauss  A. Tanzke  H. H. Trinh Thi  C. Türkoǧlu  M. Uffinger  A. Ulrich  I. Usherov  S. Wawoczny  M. Willers  M. Wüstrich  A. Zöller 《The European Physical Journal C - Particles and Fields》2017,77(9):637
Models for light dark matter particles with masses below 1 GeV/c\(^2\) are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the \(\nu \)-cleus experiment has achieved an energy threshold of \(E_{th}=(19.7\pm 0.9)\) eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 and 500 MeV/c\(^2\).  相似文献   

2.
Recently, a new interesting idea of origin of gravity has been developed by Verlinde. In this scheme of emergent gravity, where horizon entropy, microscopic de Sitter states and relevant contribution to gravity are involved, an entropy displacement resulting from matter behaves as a memory effect and can be exhibited at sub-Hubble scales, namely, the entropy displacement and its “elastic” response would lead to emergent gravity, which gives rise to an extra gravitational force. Then galactic dark matter effects may origin from such extra emergent gravity. We discuss some concepts in Verlinde’s theory of emergent gravity and point out some possible problems or issues, e.g., the gravitational potential caused by Verlinde’s emergent apparent dark matter may no longer be continuous in spatial distribution at ordinary matter boundary (such as a massive sphere surface). In order to avoid the unnatural discontinuity of the extra emergent gravity of Verlinde’s apparent dark matter, we suggest a modified dark-baryonic mass relation (a formula relating Verlinde’s apparent dark matter mass to ordinary baryonic matter mass) within this framework of emergent gravity. The modified mass relation is consistent with Verlinde’s result at relatively small scales (e.g., \(R<3h_{70}^{-1}\) Mpc). However, it seems that, compared with Verlinde’s relation, at large scales (e.g., gravitating systems with \(R>3h_{70}^{-1}\) Mpc), the modified dark-baryonic mass relation presented here might be in better agreement with the experimental curves of weak lensing analysis in the recent work of Brouwer et al. Galactic rotation curves are compared between Verlinde’s emergent gravity and McGaugh’s recent model of MOND (Modified Newtonian Dynamics established based on recent galaxy observations). It can be found that Verlinde rotational curves deviate far from those of McGaugh MOND model when the MOND effect (or emergent dark matter) dominates. Some applications of the modified dark-baryonic mass relation inspired by Verlinde’s emergent gravity will be addressed for galactic and solar scales. Potential possibilities to test this dark-baryonic mass relation as well as apparent dark matter effects, e.g., planetary perihelion precession at Solar System scale, will be considered. This may enable to place some constraints on the magnitudes of the MOND characteristic acceleration at the small solar scale.  相似文献   

3.
Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B–L are viable. In this spirit, we investigate possible dark matter realizations in the context of the \(U(1)_\mathrm{B{-}L}\) model: (i) Dirac fermion with unbroken B–L; (ii) Dirac fermion with broken B–L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound \(M_{Z^{\prime }}/g_\mathrm{BL} \gtrsim 7\) TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find \(M_{Z^{\prime }}/g_\mathrm{BL} > 8.7\) TeV for \(g_\mathrm{BL}=0.3\). We conclude that the NLO+NLL corrections improve the dilepton bounds on the \(Z^{\prime }\) mass and that both dark matter candidates are only viable in the \(Z^{\prime }\) resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model.  相似文献   

4.
In this paper, we investigate the late-time cosmic acceleration in mimetic f(RT) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from \(\mathcal {Q}(z)\) and the well-known particular model f(RT), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(RT) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(RT) gravity can be damped.  相似文献   

5.
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a \(\mathbb {Z}_2\) symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above \(\sim \)1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.  相似文献   

6.
We propose a quasi-degenerate dark matter scenario to simultaneously explain the 1.4 Te V peak in the high-energy cosmic-ray electron-positron spectrum reported by the DAMPE collaboration very recently and the 3.5 ke V X-ray line observed in galaxies clusters and from the Galactic centre and confirmed by the Chandra and Nu STAR satellites. We consider a dark S U(2)′× U(1)′gauge symmetry under which the dark matter is a Dirac fermion doublet composed of two S U(2)′doublets with non-trivial U(1)′charges. At the one-loop level the two dark fermion components can have a mass split as a result of the dark gauge symmetry breaking. Through the exchange of a mediator scalar doublet the two quasi-degenerate dark fermions can mostly annihilate into the electron-positron pairs at the tree level for explaining the 1.4 Te V positron anomaly, meanwhile, the heavy dark fermion can very slowly decay into the light dark fermion with a photon at the one-loop level for explaining the 3.5 ke V X-ray line. Our dark fermions can be also verified in the direct detection experiments.  相似文献   

7.
f(RT) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(RT) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter–geometry coupling within the f(RT) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter–geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(RT) formalism in order to check its reliability in other fields, rather than cosmology.  相似文献   

8.
The WIMPs are considered to belong to the favorable dark matter (DM) candidates, but the upper bounds on the interactions between DM and standard model (SM) particles obtained by the upgraded facilities of DM direct detection get lower and lower. Researchers turn their attention to the search for less massive DM candidates, i.e. light dark matter of the MeV scale. The recently measured anomalous transition in \(^8\)Be suggests that there exists a vectorial boson which may mediate the interaction between DM and SM particles. Based on this scenario, we combine the relevant cosmological data to constrain the mass range of DM, and we have found that there exists a model parameter space where the requirements are satisfied, a range of \(10.4 \lesssim m_{\phi } \lesssim \) 16.7 MeV for scalar DM, and \(13.6 \lesssim m_{V} \lesssim 16.7\) MeV for vectorial DM is demanded. Then a possibility of directly detecting such light DM particles via DM–electron scattering is briefly studied in this framework.  相似文献   

9.
N DASH  V M DATAR  G MAJUMDER 《Pramana》2016,86(4):927-937
We report on the simulation studies addressing the possibility of dark matter particle (DMP) decaying into μ+μ? channel. While not much is known about the properties of dark matter particles except through their gravitational effect, it has been recently conjectured that the so-called ‘anomalous Kolar events’ observed some decades ago may be due to the decay of unstable dark matter particles. The aim of this study is to see if this conjecture can be verified at the proposed iron calorimeter (ICAL) detector at INO. We study the possible decay to μ± mode which may be seen in this detector with some modifications. For the purposes of simulation, we assume that the channel saturates the decay width for the mass ranging from 1 to 50 GeV/c2. The aim is not only to investigate the decay signatures, but also, more generally, to establish lower bounds on the lifetime of DMP even if no such decay takes place.  相似文献   

10.
In this article we describe a model of the universe consisting of a mixture of the ordinary matter and a so-called cosmic quaternionic field. The basic idea here consists in an attempt to interpret as the energy density of the quaternionic field whose source is any form of energy including the proper energy density of this field. We set the energy density of this field to and show that the ratio of ordinary dark matter energy density assigned to is constant during the cosmic evolution. We investigate the interaction of the quaternionic field with the ordinary dark matter and show that this field exerts a force on the moving dark matter which might possible create the dark matter in the early universe. Such determined fulfils the requirements asked from the dark energy. In this model of the universe, the cosmological constant, the fine-tuning and the age problems might be solved. Finally, we sketch the evolution of the universe with the cosmic quaternionic field and show that the energy density of the cosmic quaternionic field might be a possible candidate for the dark energy.  相似文献   

11.
We investigate about the stability of generalized QCD ghost dark energy model against perturbations in the FRW background. For this purpose, we use the squared sound speed $v_{s}^{2}$ whose sign determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-flat geometry. In all cases we find almost a same result. Based on the square sound speed analysis, due to the existence of a free parameter in this model, the model is theoretically capable to lead a dark energy dominated stable universe. However, observational constraints rule out such a chance. In conclusion, we find evidences that the generalized ghost dark energy might can not lead to a stable universe favored by observations at the present time.  相似文献   

12.
We study the polytropic gas scenario as the unification of dark matter and dark energy. We fit the model parameters by using the latest observational data including type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble parameter data. At 68.3 % and 95.4 % confidence levels, we find the best fit values of the model parameters as $\tilde{K}=0.742_{-0.024}^{+0.024}(1\sigma)_{-0.049}^{+0.048}(2\sigma)$ and $n=-1.05_{-0.08}^{+0.08}(1\sigma)_{-0.16}^{+0.15}(2\sigma)$ . Using the best fit values of the model, we obtain the evolutionary behaviors of the equation of state parameters of the polytropic gas model and dark energy, the deceleration parameter of the universe, the dimensionless density parameters of dark matter and dark energy as well as the growth factor of structure formation. Then, we investigate different energy conditions in the polytropic gas model and obtain that only the strong energy condition is violated for the special ranges of the redshift. We also conclude that in the this model, the universe starts from the matter dominated epoch and approaches a de Sitter phase at late times, as expected. Further, the universe begins to accelerate at redshift z t=0.74. Furthermore, in contrary to the ΛCDM model, the cosmic coincidence problem is solved naturally in the polytropic gas scenario. Moreover, this model fits the data of the growth factor well as the ΛCDM model.  相似文献   

13.
Many studies have shown that either the nearby astrophysical source or dark matter(DM)annihilation/decay can be used to explain the excess of high energy cosmic ray(CR)e~±,which is detected by many experiments,such as PAMELA and AMS-02.Recently,the dark matter particle explorer(DAMPE)collaboration has reported its first result of the total CR e~±spectrum from 25 Ge V to 4.6 Te V with high precision.In this work,we study the DM annihilation and pulsar interpretations of this result.We show that the leptonic DM annihilation channels toτ~+τ~-,4μ,4τ,and mixed charged lepton final states can well explain the DAMPE e~±spectrum.We also find that the mixed charged leptons channel would lead to a sharp drop structure at~Te V.However,the ordinary DM explanations have been almost excluded by the constraints from the observations of gamma-ray and CMB,unless some exotic DM models are introduced.In the pulsar scenario,we analyze 21 nearby known pulsars and assume that one of them dominantly contributes to the high energy CR e~±spectrum.Involving the constraint from the Fermi-LAT observation of the e~±anisotropy,we find that two pulsars could explain the DAMPE e~±spectrum.Our results show that it is difficult to discriminate between the DM annihilation and single pulsar explanations of high energy e~±with the current DAMPE result.  相似文献   

14.
The existence of dark matter is undisputed, while the nature of it is still unknown. Explaining dark matter with the existence of a new unobserved particle is among the most promising possible solutions. Recently dark matter candidates in the MeV mass region received more and more interest. In comparison to the mass region between a few GeV to several TeV, this region is experimentally largely unexplored. We discuss the application of a RNDR DEPFET semiconductor detector for direct searches for dark matter in the MeV mass region. We present the working principle of the RNDR DEPFET devices and review the performance obtained by previously performed prototype measurements. The future potential of the technology as dark matter detector is discussed and the sensitivity for MeV dark matter detection with RNDR DEPFET sensors is presented. Under the assumption of six background events in the region of interest and an exposure of 1 kg year a sensitivity of about \(\overline{\sigma }_{e} = 10^{-41}\,{\mathrm {cm}}^2\) for dark matter particles with a mass of 10 MeV can be reached.  相似文献   

15.
Successful models of pure gravity mediation (PGM) with radiative electroweak symmetry breaking can be expressed with as few as two free parameters, which can be taken as the gravitino mass and \(\tan \beta \) . These models easily support a 125–126 GeV Higgs mass at the expense of a scalar spectrum in the multi-TeV range and a much lighter wino as the lightest supersymmetric particle. In these models, it is also quite generic that the Higgs mixing mass parameter, \(\mu \) , which is determined by the minimization of the Higgs potential is also in the multi-TeV range. For \(\mu >0\) , the thermal relic density of winos is too small to account for the dark matter. The same is true for \(\mu <0\) unless the gravitino mass is of order 500 TeV. Here, we consider the origin of a multi-TeV \(\mu \) parameter arising from the breakdown of a Peccei–Quinn (PQ) symmetry. A coupling of the PQ-symmetry breaking field, \(P\) , to the MSSM Higgs doublets, naturally leads to a value of \(\mu \sim \langle P \rangle ^2 /M_P \sim {\mathcal O}(100)\) TeV and of the order that is required in PGM models. In this case, axions make up the dark matter or some fraction of the dark matter with the remainder made up from thermal or non-thermal winos. We also provide solutions to the problem of isocurvature fluctuations with axion dark matter in this context.  相似文献   

16.
The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on $B^{0}_{s}\to \mu^{+}\mu^{-}$ (LHCb experiment), the relic density (WMAP and other cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m 0) below 1500 GeV. For large m 0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.  相似文献   

17.
In an arbitrary axisymmetric stationary spacetime, we determine the expression for the tangential velocity of test objects following a circular stable geodesic motion in the equatorial plane, as function of the metric coefficients. Next, we impose the condition, observed in large samples of disks galaxies, that the magnitude of such tangential velocity be radii independent in the dark matter dominated region, obtaining a constraint equation among the metric coefficients, and thus arriving to an iff (iff means: if and only if.) condition: The tangential velocity of test particles is radii independent iff the metric coefficients satisfied the mentioned constraint equation. Furthermore, for the static case, the constraint equation can be easily integrated, leaving the spacetime at the equatorial plane essentially with only one independent metric coefficient. With the geometry thus fixed, we compute the Einstein tensor and equate it to an arbitrary stress energy tensor, in order to determine the type of energy-matter which could produce such a geometry. Within an approximation, we deduce a constraint equation among the components of the stress energy tensor. We test in that constraint equation several well known types of matter, which have been proposed as dark matter candidates and are able to point for possible right ones. Finally, we also present the spherically symmetric static case and apply the mentioned procedure to perfect fluid stress energy tensor, recovering the Newtonian result as well as the one obtained in the axisymmetric case. We also present arguments on the need to use GR to study types of matter different than the dust one.  相似文献   

18.
Recent results from the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment have identified the presence of a spectral feature between approximately 300 and 800 GeV in the cosmic ray electron spectrum. This spectral feature appears to imply the existence of a local (1 kpc) source of high energy electrons. Emission from a local pulsar and dark matter annihilations have each been put forth as possible origins of this signal. In this Letter, we consider the sensitivity of ground based atmospheric Cherenkov telescopes to electrons and show that observatories such as HESS and VERITAS should be able to resolve this feature with sufficient precision to discriminate between the dark matter and pulsar hypotheses with considerably greater than 5σ significance, even for conservative assumptions regarding their performance. In addition, this feature provides an opportunity to perform an absolute calibration of the energy scale of ground based, gamma ray telescopes.  相似文献   

19.
The Lambda-renormalized Einstein–Schrödinger theory is a modification of the original Einstein–Schrödinger theory in which a cosmological constant term is added to the Lagrangian, and it has been shown to closely approximate Einstein– Maxwell theory. Here we generalize this theory to non-Abelian fields by letting the fields be composed of d × d Hermitian matrices. The resulting theory incorporates the U(1) and SU(d) gauge terms of Einstein–Maxwell–Yang–Mills theory, and is invariant under U(1) and SU(d) gauge transformations. The special case where symmetric fields are multiples of the identity matrix closely approximates Einstein–Maxwell–Yang–Mills theory in that the extra terms in the field equations are < 10?13 of the usual terms for worst-case fields accessible to measurement. The theory contains a symmetric metric and Hermitian vector potential, and is easily coupled to the additional fields of Weinberg–Salam theory or flipped SU(5) GUT theory. We also consider the case where symmetric fields have small traceless parts, and show how this suggests a possible dark matter candidate.  相似文献   

20.
Basic properties of the Einstein equations modified by a cosmological Λ-term dependent on the Ricci scalar R are considered. We show that in addition to a nonzero divergence of the energy-momentum tensor of the matter and the consequent cold matter mass nonconservation as the Universe expands, this model suggests a significant modification of the equations for the gravitational potential and particle acceleration in the Newtonian approximation. These circumstances allow the necessary criteria for possible functional dependences Λ(R) to be formulated. Nevertheless, by introducing a variable Λ-term, we can look at the problems of dark matter and dark energy anew. In particular, we show that the model in which the cosmological term depends linearly on the Ricci scalar (this corresponds to the approximation of a more complex dependence in the case of low matter densities) makes it possible to satisfactorily describe the rotation curves of galaxies without invoking the dark matter hypothesis and to construct a cosmological model with a variable vacuum energy density, in qualitative agreement with the present views of the early Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号