首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical approach is used to determine the power spectrum of the surface roughness from experimental data for the reflectivity of randomly rough surfaces. A one-dimensional, randomly rough, perfectly conducting surface that is illuminated by s-polarized light whose plane of incidence is perpendicular to the generators of the surface is considered, and the power spectrum is obtained within the framework of phase perturbation theory. Good agreement with numerically generated experimental data is obtained.  相似文献   

2.
X‐ray reflectivity studies of the structure of liquid–vapour and liquid–liquid interfaces at modern sources, such as free‐electron lasers, are currently impeded by the lack of dedicated liquid surface diffractometers. It is shown that this obstacle can be overcome by an alternative experimental approach that uses the natural curvature of a liquid drop for variation of the angle of incidence. Two modes of operation are shown: (i) sequential reflectivity measurements by a nanometre beam and (ii) parallel acquisition of large ranges of a reflectivity curve by micrometre beams. The feasibility of the two methods is demonstrated by studies of the Hg/vapour, H2O/vapour and Hg/0.1 M NaF interface. The obtained reflectivity curves match the data obtained by conventional techniques up to 5αc in micro‐beam mode and up to 35αc in nano‐beam mode, allowing observation of the Hg layering peak.  相似文献   

3.
The smectic order in thin and ultra thin films (150–600Å) of the chiral ferroelectric liquid crystal mixture ZLI-3654 is studied using the X-ray reflectivity technique. The spin cast films on various substrates (float glass, Si wafer, polymer coated glass, etc.) order spontaneously with smectic layering parallel to the substrate surface. A simple model which assumes a sinusoidal density modulation can describe well the experimental reflectivity profiles. The X-ray reflectivity provides a method to evaluate the phases of the structure factor. We demonstrate, for the first time, that is possible to extract the molecular tilt angle, , in ferroelectric liquid crystals from X-ray reflectivity measurements of ultra thin films. The temperature dependence of the tilt angle in the smectic C* phase are almost independent of the film thickness (down to 200 Å) and are similar to those in the bulk.  相似文献   

4.
The calculation of reflection‐mode grazing‐incidence X‐ray absorption spectra from single surfaces and (multi‐)layered systems is studied here. In particular, the influence of the surface and interface roughness was investigated in detail. Simulations of grazing‐incidence reflection‐mode EXAFS spectra using a simple Fresnel theory neglecting any effect of roughness are compared with the Névot–Croce model and the elaborated distorted‐wave Born approximation which both include surface and interface roughness. Data are presented for clean gold surfaces, where the strong influence of the surface roughness on the resulting spectra is demonstrated. Furthermore, in the case of layered systems, the influence of both the outer (air or vacuum side) surface roughness and the inner interface roughness on the reflection‐mode EXAFS spectra is evaluated. The practical consequences of the observed correlations are discussed, and a quantitative data analysis of a copper sample that was oxidized in ambient air for several months is shown, including the evaluation of specular reflectivity profiles at fixed energy.  相似文献   

5.
To study the scattering properties of metamaterials, we generalize two scattering methods developed for conventional (non-magnetic) isotropic materials to the case of materials with arbitrary values (positive or negative) of magnetic permeability and electric permittivity. The generalized methods are used to study the changes produced in the reflectivity of a metamaterial surface with localized roughness when the relative refractive index changes sign. Our results show that, unlike the case of a plane surface whose reflectivity is unaffected by the change of sign of the relative refractive index, in rough surfaces the change of sign is manifested in the reflectivity, even for very low roughness, particularly in observation directions away from the specular direction.  相似文献   

6.
We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.  相似文献   

7.
In situ reflectivity measurements of the solid/liquid interface with a pump-probe setup were performed during laser-induced backside wet etching (LIBWE) of fused silica with KrF excimer laser using toluene as absorbing liquid. The intensity, the temporal shape, and the duration of the reflected light measured in dependence on the laser fluence are discussed referring to the surface modification and the bubble formation.The vaporisation of the superheated liquid at the solid interface causes a considerable increase of the reflectivity and gives information about the bubble lifetime. The alterations of the reflectivity after bubbles collapse can be explained with the changed optical properties due to surface modifications of the solid surface. Comparative studies of the reflectivity at different times and the etch rate behaviour in dependence on the laser fluence show that the in situ measured surface modification begins just at the etch threshold fluence and correlates further with etch rate behaviour and the etched surface appearance. The already observed surface modification at LIBWE due to a carbon deposition and structural changes of the near surface region are approved by the changes of the interface reflectivity and emphasizes the importance of the modified surface region in the laser-induced backside wet etching process.  相似文献   

8.
Thermochromic vanadium dioxide VO2 exhibits a semi-conducting to metallic phase transition at Tc=68 °C, involving strong variations in optical transmittance, reflectance and emissivity. However, the optical contrasts observed in thin films or nanostructured compacted samples seem to depend on both surface microstructure and surface crystal texture. In the case of opaque materials, surface defects might play a drastic role in optical reflectivity. As the high temperature metallic phase of VO2 is opaque for infrared radiations, we used aluminum samples as standards allowing us to correlate reflectivity responses with porosity and surface defects. Then, various polycrystalline and nanostructured VO2 samples compacted at various pressures and presenting variable surface roughness were prepared. Thin films were deposited by radio frequency sputtering process. The samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Optical properties (reflectance and emissivity) were analyzed above and below the transition temperature, making use of specific FTIR equipments. In thin films, the deposited VO2 phase was systematically oriented and surface porosity was very weak. In polycrystalline samples, as the compaction pressure increased, surface porosity decreased, and infrared optical contrast increased. In such samples, preferred orientations were favored for low applied pressures. These features clearly show that the main parameters conditioning the optical contrast should be the surface defects and porosity, not the preferred crystal orientations. As an additional interesting result, the surfaces formed from compacted nanocrystalline VO2 powders present improved optical contrast for reflectance and emissivity properties.  相似文献   

9.
There has been renewed interest in the structure of III-V compound semiconductor (001) surfaces caused by recent experimental and theoretical findings, which indicate that geometries different from the seemingly well-established dimer models describe the surface ground state for specific preparation conditions. I review briefly the structure information available on the (001) surfaces of GaP, InP, GaAs and InAs. These data are complemented with first-principles total-energy calculations. The calculated surface phase diagrams are used to explain the experimental data and reveal that the stability of specific surface structures depends largely on the relative size of the surface constituents. Several structural models for the Ga-rich GaAs (001)(4×6) surface are discussed, but dismissed on energetic grounds. I discuss in some detail the electronic properties of the recently proposed cation-rich GaAs (001)ζ(4×2) geometry. Received: 18 May 2001 / Revised version: 23 July 2001 / Published online: 3 April 2002  相似文献   

10.
偏二甲肼在氟化镁涂层表面的吸附与反应   总被引:1,自引:0,他引:1  
研究了偏二甲肼在氟化镁涂层表面的吸附和化学反应情况.首先用液相或气相偏二甲肼沾染氟化镁涂层表面,再将涂层置于真空环境足够长时间,然后通过对比沾染前、后涂层表面的红外吸收光谱、X射线光电子能谱和漫反射率,了解涂层表面的吸附状况和性能变化.实验表明,覆盖于氟化镁涂层表面的偏二甲肼液膜分子,在真空环境下充分脱附的时间约为2h,充分脱附后的涂层表面只有单层化学吸附存在,其质量密度约为27ng/cm2,实验后氟化镁涂层表面的漫反射率下降了10%~15%;在-10℃的偏二甲肼饱和蒸气中沾染10min后,氟化镁涂层表面的原子组成和漫反射率变化很小,红外吸收光谱也没有偏二甲肼特征峰出现.  相似文献   

11.
We present detailed study of structure and interface morphology of an electrodeposited Cu/Ni film using X-ray diffraction, X-ray reflectivity, neutron reflectivity and atomic force microscopy (AFM) techniques. The crystalline structure of the film has been determined by X-ray diffraction, which suggest polycrystalline growth of the film. The depth profile of density in the sample has been obtained from specular X-ray and neutron reflectivity measurements. AFM image of the air-film interface shows that the surface is covered by globular islands of different sizes. The AFM height distribution of the surface clearly shows two peaks and the relief structure (islands) on the surface in the film, which can be treated as a quasi-two-level random rough surface structure. We have demonstrated that the detailed morphology of air-film interfaces, the quasi-two-level surface structure as well as morphology of the buried interfaces can be obtained from off-specular neutron reflectivity data. AFM and off-specular neutron reflectivity measurements also show that the morphologies of electrodeposited surface is distinctively different as compared to that of sputter-deposited surfaces in the sample.  相似文献   

12.
Superhydrophobic surfaces, with a liquid contact angle theta greater than 150 degrees , have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have a hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D(f) of the surface.  相似文献   

13.
We studied ~0.5 μm and 30–80 ? thick films of a normal dielectric liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), at temperature range 228–286 K, deposited onto silicon (111) substrate with native oxide using X-ray reflectivity. TEHOS is spherical with size ~10 ?, non-polar, non-reactive, and non-entangling; TEHOS has been reported to show interfacial layering at room temperature and surface layering at 0.23 Tc (Tc≈ 950 K). For films m thick, the reflectivity data did not change significantly as a function of temperature; for films 30–80 ? thick, the reflectivity data did change. The data could be fitted with an electron density model composed of a minimum necessary number of Gaussians and a uniform density layer with error-function broadened interfaces. When the film thickness is 60–80 ? below 246 K, we found that the interface and the surface layering coexist but do not overlap. When the film thickness is 30–40 ? below 277 K, they overlap and the electron density profile shows slowly decreasing molecular oscillations at the air-liquid interface.  相似文献   

14.
In this paper we present the interpretation and analysis of time-resolved reflectivity measurements for excimer laser irradiated silicon. A nonequilibrium melting model is used to calculate the temperature distribution in the sample and the position of the solid-liquid interface. Calculations of the reflectivity of the probe beam are performed to obtain time-resolved reflectivity signals from basic principles, independent of the experiments, which can be compared with experimental data to reveal information about dynamics of the heating and cooling process. We propose more accurate methods for the determination of the melting threshold, the melt front position and the reflectivity of the sample for excimer laser light. From model calculations and experimental data we determine the reflectivity of the solid and liquid silicon for ArF excimer laser light.  相似文献   

15.
A detailed study of the peculiarities of the radiative heat transfer (RHT) in axisymmetric domains bounded with Fresnel surfaces is undertaken. The analytical (exact) solutions of the RHT problem in conical and cylindrical domains with refractive index more than unity were obtained for a variety of absorption coefficient and geometrical parameters of the domains. It is shown that due to Fresnel reflections the net radiative flux strongly varies over the base of cone and cylinder. The difference in RHT processes for the cases of constant reflectivity of the boundaries and that calculated by Fresnel formula is demonstrated. The influence of specular reflection at the crystal side surface on the shape of the solid/liquid interface in growing bismuth germanate crystals is shown.  相似文献   

16.
17.
By the use of a unitarity and reciprocity conserving theory for the scattering of p-polarized light from a one-dimensional random dielectric surface the we determine the shift in the Brewster angle toward smaller angles of incidence caused by the surface roughness, and the (non-zero) value of the reflectivity at its minimum. Both quantities may be useful in the characterization of the roughness of such surfaces.  相似文献   

18.
Abstract

Heat and mass transfer rates from complex surfaces to a turbulent channel flow were measured using an infrared imaging system and the naphthalene sublimation technique, respectively. The surfaces are composed of spherical particles embedded either in a layer of thermally conducting, nonevaporating liquid or in an isothermal layer of subliming naphthalene. The experimental results indicate that, in general, the surface heat and mass transfer coefficients vary as the surface roughness increases, whereas the surface heat transfer coefficient changes as the solid-to-liquid thermal conductivity ratio is varied. Mass transfer rates exhibit less sensitivity to variations in the naphthalene height for surfaces composed of smaller particles, and heat transfer rates from surfaces of smaller particles remain fairly constant as the liquid level and thermal conductivity ratios are varied. The results are discussed relative to drying of partially wetted surfaces with surface complexity induced by the presence of droplets upon an impermeable substrate or a receding moisture front in a bed of granular material.  相似文献   

19.
A theoretical model based on the competition between short-pitch and long-pitch types of helical order is developed for thin films of antiferroelectric smectic liquid crystals. In the case of the “bookshelf” structure of the film and non-polar surfaces, subsurface perturbations of the ordering are found out analytically. Corresponding contributions to the free energies of the different phases are analysed. The possibility of sufficient influence of the boundaries on phase sequences is predicted even in the case of weak surface anchoring. A consistent explanation of the controversial experimental information is given; further ways of experimental justification of the model assumptions are discussed. Received 23 May 2002 RID="a" ID="a"e-mail: mgorkoun@uos.de  相似文献   

20.
用X射线反射方法研究了分子束外延技术生长的Si中Ge薄层异质结构的Ge原子分布特性.根据X射线反射理论及Parratt数值计算方法对实验反射曲线的模拟,得到不同厚度的Ge薄层异质结构样品中Ge原子的深度分布为非对称指数形式:在靠近样品表面一侧的衰减长度为8埃,而在靠近样品衬底一侧的衰减长度为3埃,且分布形式与Ge原子层的厚度无关.讨论了不同结构参数(Ge原子薄层的深度、Ge原子分布范围、样品表面粗糙度、样品表面氧化层厚度等)对样品低角反射曲线的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号