首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient ‘R’ was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.  相似文献   

2.
Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.  相似文献   

3.
A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0–8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI24 ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.  相似文献   

4.
The high demand for renewable energy and increased biodiesel production lead to the surplus availability of crude glycerol. Due to the above reason, the bio-based value addition of crude glycerol into various bioproducts is investigated; among them, microbial lipids are attractive. The present study was dedicated to find the optimal glycerol concentration and carbon/nitrogen (C/N) ratio to produce maximum lipid using Yarrowia lipolytica SKY7. The glycerol concentration (34.4 to168.2 g/L) and C/N ratio (25 to 150) were selected to investigate to maximize the lipid production. Initial glycerol concentration 112.5 g/L, C/N molar ratio of 100, and with 5 % v/v inoculum supplementation were found to be optimum for biomass and lipid production. Based on the above optimal parameters, lipid concentration of 43.8 % w/w with a biomass concentration of 14.8 g/L was achieved. In the case of glycerol concentration, the maximum Yp/s (0.192 g/g); Yx/s (0.43 g/g) was noted when the initial glycerol concentration was 112.5 g/L with C/N molar ratio 100 and inoculum volume 5 % v/v. The glycerol uptake was also noted to increase with the increase in glycerol concentration. At low C/N ratio, the glycerol consumption was found to be high (79.43 g/L on C/N 25) whereas the glycerol consumption was observed to decrease when the C/N ratio was raised to 150 (40.8 g/L).  相似文献   

5.
N-cyanoacylacetaldehyde hydrazone (CAAH), which is a laboratory synthetic reagent, is proposed as a new reagent for spectrophotometry determination of microamounts of molybdenum at λmax 790 nm. The reagent forms 1:1 blue coloured complex with molybdenum (VI) in phosphoric acid solution. The stable blue colour is obtained finally after changing from yellow to green. The colour development depends on temperature, time and concentration of phosphoric acid. This reagent is applied for the determination of molybdenum in steel alloys and the results are satisfactory.  相似文献   

6.
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K2HPO4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.  相似文献   

7.
A spectrophotometric method is developed for the determination of dissolved tri-n butyl phosphate (TBP) in aqueous streams of Purex process used in nuclear fuel reprocessing. The method is based on the formation of phosphomolybdate with added ammonium molybdate followed by reduction with hydrazine sulphate in acid medium. Orthophosphate and molybdate ions combine in acidic solution to give molybdophosphoric (phosphomolybdic) acid, which upon selective reduction (with hydrazinium sulphate) produces a blue colour, due to molybdenum blue. The intensity of blue colour is proportional to the amount of phosphate. If the acidity at the time of reduction is 0.5?M in sulphuric acid and hydrazinium sulphate is the reductant, the resulting blue complex exhibits maximum absorption at 810?C840?nm. The system obeys Lambert?CBeer??s law at 830?nm in the concentration range of 0.1?C1.0???g/ml of phosphate. Molar Absorptivity was determined to be 3.1?×?104?L?mol?1?cm?1 at 830?nm. The results obtained are reproducible with standard deviation of 1?% and relative error less than 2?% and are in good agreement with those obtained by ion chromatographic technique.  相似文献   

8.
Research investigations involving pristine carbon nanotubes (CNTs) and their applications in diversified fields have been gathering enormous impetus in recent times. One such emerging domain deals with the hybridization of CNTs within hydrogels to form soft nanocomposites with superior properties. However, till now, reports on the inclusion of pristine CNTs within low‐molecular‐weight hydrogels are very scarce due to their intrinsic feature of remaining in the bundled state and strong repulsive behavior to the aqueous milieu. Herein, the synthesis of a series of amino acid/dipeptide‐based amphiphilic hydrogelators having a quaternary ammonium/imidazolium moiety at the polar head and a C16 hydrocarbon chain as the hydrophobic segment is reported. The synthesized amphiphiles exhibited excellent hydrogelation (minimum gelation concentration (MGC) ≈0.7–5 % w/v) as well as single‐walled carbon nanotube (SWNT) dispersion ability in aqueous medium. Interestingly, the dispersed SWNTs were incorporated into the supramolecular hydrogel formed by amphiphiles with an imidazolium moiety at the polar end through complementary cation–π and π–π interactions. More importantly, the newly synthesized hydrogelators were able to accommodate a significantly high amount of pristine SWNTs (2–3.5 % w/v) at their MGCs without affecting the gelating properties. This is the first time that such a huge amount of SWNTs has been successfully incorporated within hydrogels. The efficient inclusion of SWNTs to develop soft nanocomposites was thoroughly investigated by spectroscopic and microscopic methods. Remarkably, the developed nanocomposites showed manifold enhancement (≈85‐fold) in their mechanical strength compared with native hydrogel without SWNTs. The viscoelastic properties of these nanocomposites were readily tuned by varying the amount of incorporated CNTs.  相似文献   

9.
A Bacillus subtilis (MTCC9102) isolate was shown to produce significant amount of keratinase under optimized conditions in solid-state fermentation using Horn meal as a substrate. Optimized value for moisture, inoculum, and aeration were found to be 100% (v/w), 50% (v/w), and 150% (w/w), respectively, and the optimum nitrogen source was peptone and carbon source was dextrose. Maximum keratinolytic activity was observed at 48 h after incubation, and the optimum age (24 h) of inoculum was significant. The influence of cultivation temperature and initial pH of the medium on keratinase production revealed the optimum values for the temperature and pH as 37 °C and 7, respectively. Maximum keratinase activity of the crude extract was 15,972 U/mg/ml. These results indicate that this bacterial strain shows a high biotechnological potential for keratinase production in solid-state fermentation, and use of the horn meal as the substrate can be implemented for keratinous solid wastes management.  相似文献   

10.
In our previous study, chitosan–alginate microcapsules were developed to protect egg yolk immunoglobulin (IgY) from gastric inactivation. The present study was undertaken to determine the effect of chitosan concentration (0–0.8%; w/v) on various properties of the microcapsules in order to produce the optimum chitosan–alginate microcapsules for use in the oral delivery of IgY. The properties investigated included microcapsule morphology, loading capacity for IgY (expressed as the IgY loading percentage, w/w, of microcapsules), encapsulation efficiency (EE%), in vitro gastroresistance, and IgY release. IgY loading percentage and EE% were both highest at 0.2% (w/v) chitosan, and, above this level, further increases were not observed. The stability of IgY in simulated gastric fluid (pH 1.2) was significantly improved by encapsulation in alginate microcapsules (IgY retained 43.5% of its activity) and was further improved by including chitosan at any of the chitosan concentrations assessed (IgY retained an average of 69.4% activity) although there was no difference in protection of gastric inactivation among concentrations of chitosan varying from 0.05% to 0.8% (w/v). Higher chitosan concentrations (i.e., ≥0.2%; w/v) prolonged the release of IgY from the microcapsules during simulated intestinal fluid incubation (pH 6.8). However, above the 0.2% (w/v) level, no significant differences were observed. We conclude that the optimum chitosan concentration for microencapsulation is 0.2% (w/v).  相似文献   

11.
Response surface methodology was used to optimize the fermentation medium for enhancing naringinase production by Staphylococcus xylosus. The first step of this process involved the individual adjustment and optimization of various medium components at shake flask level. Sources of carbon (sucrose) and nitrogen (sodium nitrate), as well as an inducer (naringin) and pH levels were all found to be the important factors significantly affecting naringinase production. In the second step, a 22 full factorial central composite design was applied to determine the optimal levels of each of the significant variables. A second-order polynomial was derived by multiple regression analysis on the experimental data. Using this methodology, the optimum values for the critical components were obtained as follows: sucrose, 10.0%; sodium nitrate, 10.0%; pH 5.6; biomass concentration, 1.58%; and naringin, 0.50% (w/v), respectively. Under optimal conditions, the experimental naringinase production was 8.45 U/mL. The determination coefficients (R 2) were 0.9908 and 0.9950 for naringinase activity and biomass production, respectively, indicating an adequate degree of reliability in the model.  相似文献   

12.
《Analytical letters》2012,45(11):1035-1045
Abstract

A procedure has been developed for the pulse polarographic determination of nanogram amounts of ortho-phosphate based on the reduction of molybdenum blue formed from 12-molydophosphate. The molybdenum blue is extracted into iso-amyl alcohol from acid solution, and the extract is then washed free of excess molybdate with dilute sulphuric acid. Finally, the molybdenum blue is back-extracted into a tartrate buffer and is pulse polarographed. Precise determinations can be made on 10 ng of PO4 3 ml?11 in the polarographed solution. Determinations have been made on standard and sample ortho-phosphate solutions at the 2 ng of PO4 3 ml?11 level by effecting a five-fold concentration at the extraction step.  相似文献   

13.
An actinomycete strain, isolated from a soil sample under a sugar cane plantation in Brazil and identified as Streptomyces viridobrunneus SCPE-09, was selected as a promising cellulolytic strain, and tested for its ability to produce cellulases from agro-industrial residues. Sugar cane bagasse or wheat bran was tested as carbon source, and corn steep liquor tested as nitrogen source. Different concentrations of carbon and nitrogen were tested using factorial design to identify optimal cellulose production. The results showed that media containing wheat bran 2.0% (w/v) and corn steep liquid 0.19% (w/v) lead to the highest production, 2.0 U mL−1 of CMCase, obtained on the fifth day of fermentation. The pH and temperature profile showed optimal activity at pH 4.9 and 50°C. As for thermostability, endoglucanases were most tolerant at 50°C, retaining more than 80% of maximal activity even after 2 h of incubation. Zymogram analyses using supernatant from growth under optimized conditions revealed the presence of two CMCase bands with apparent molecular masses of 37 and 119 kDa. The combination of pH tolerance and CMCase production from agro-industrial residues by S. viridobrunneus SCPE-09 offers promise for future bioethanol biotechnologies.  相似文献   

14.
The production of biosurfactant by Rhodococcus erythropolis during the growth on glycerol was investigated. The process was carried out at 28°C in a 1.5-L bioreactor using glycerol as carbon source. The bioprocess was monitored through measurements of biosurfactant concentration and glycerol consumption. After 51 h of cultivation, 1.7 g/L of biosurfactant, surface, and interfacial tensions values (with n-hexadecane) of 43 and 15 mN/m, respectively, 67% of Emulsifying Index (E 24), and 94% of oil removal were obtained. The use of glycerol rather than what happens with hydrophobic carbon source allowed the release of the biosurfactant, originally associated to the cell wall.  相似文献   

15.
The carbon content of mesostructured organic‐inorganic hybrid material of a cylindrical block copolymer template of poly(2‐vinylpyridine)‐block‐poly(allyl methacrylate) (P2VP‐b‐PAMA) and ammonium paramolybdate (APM) could be reduced by thermal depolymerization. By calcination in vacuo at 320 °C the PAMA core can be completely removed while the remaining P2VP brush preserves the mesostructure. The P2VP‐APM composite can then be carburized in‐situ to MoOxCy in a second pyrolysis step without any additional carbon source but P2VP. The molybdenum oxycarbide nanotubes obtained, form hierarchically porous non‐woven structures, which were tested as catalyst in the decomposition of NH3. They proved to be catalytically active at temperatures above 450 °C. The activation energy was estimated from an Arrhenius Plot to be 127 kJ · mol–1.  相似文献   

16.
Laccase activity was detected in a soil bacterium Stenotrophomonas maltophilia AAP56 identified by biochemical and molecular methods. It was produced in cells at the stationary growth phase in Luria Bertani (LB) medium added by 0.4 mM copper sulfate. The addition of CuSO4 in culture medium improved production of laccase activity. However, one laccase enzyme was detected by native polyacrylamide gel electrophoresis. The enzyme showed syringaldazine (K m = 53 μM), 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (K m = 700 μM), and pyrocatechol (K m = 25 μM) oxidase activity and was activated by addition of 0.1% (v/v) Triton-X-100 in the reaction mixture. Moreover, the laccase activity was increased 2.6-fold by the addition of 10 mM copper sulfate; the enzyme was totally inhibited by ethylenediaminetetraacetic acid (5 mM), suggesting that this laccase is a metal-dependant one. Decolorization activity of some synthetic dyes (methylene blue, methyl green, toluidine blue, Congo red, methyl orange, and pink) and the industrial effluent (SITEX Black) was achieved by the bacteria S. maltophilia AAP56 in the LB growth medium under shaking conditions.  相似文献   

17.
18.
A salt-tolerant bacterium was isolated from the surface soil of a pharmaceutical factory, which could efficiently decolorize azo dyes. The strain was identified as Exiguobacterium sp. according to its morphological characteristics and 16S rRNA gene sequence analysis. Decolorization of X-3B with resting cells of this strain, which were catalyzed by redox mediator (anthraquinone), was studied, and the conditions were optimized. For color removal and cells growth, the optimal inoculation amount, pH, temperature, salinity, and metal ions were 6% (v/v), 5.4–7.0, 30–40 °C, 15% (w/v) NaCl, and 1 mmol L−1 Mg2+ or Ca2+, respectively. It was exhibited that decolorization process proceeded primarily by enzymatic reduction associated with a minor portion of bio-adsorption to inactivated microbial cells. Anthraquinone could really accelerate the decolorization of X-3B under the optimal conditions.  相似文献   

19.
Mono- and Dinuclear MoII Phthalocyaninates(2–): Syntheses and Properties of Bis(cyano)phthalocyaninato(2–)molybdate(II) and Bis(phthalocyaninato(2–)molybdenum(II)) Blue diamagnetic bis(phthalocyaninato(2–)molybdenum(II)) is synthezied by reduction of oxophthalocyaninato(2–)molybdenum(IV) with boiling triphenylphosphine. The Mo–Mo stretching vibration ist observed in the resonance Raman spectrum at 374 cm–1. It is chemically inert and dissolves in conc. sulfuric acid without decomposition. It reacts with molten tetra(n-butyl)ammonium cyanide to yield redbrown paramagnetic bis[tetra(n-butyl)ammonium] biscyanophthalocyaninato(2–)molybdate(II) (μeff = 3.15 μB; S = 1). The complex salt is very instable and demetallizes in solution. In the extraordinary UV-VIS-NIR spectrum an intense trip-triplet transition at 7780 cm–1 together with a very structured B region between 14000 and 21000 cm–1 of comparable absorbance is observed.  相似文献   

20.
The replacement of platinum with non‐precious‐metal electrocatalysts with high efficiency and superior stability for the hydrogen‐evolution reaction (HER) remains a great challenge. Herein, we report the one‐step synthesis of uniform, ultrafine molybdenum carbide (Mo2C) nanoparticles (NPs) within a carbon matrix from inexpensive starting materials (dicyanamide and ammonium molybdate). The optimized catalyst consisting of Mo2C NPs with sizes lower than 3 nm encapsulated by ultrathin graphene shells (ca. 1–3 layers) showed superior HER activity in acidic media, with a very low onset potential of ?6 mV, a small Tafel slope of 41 mV dec?1, and a large exchange current density of 0.179 mA cm?2, as well as good stability during operation for 12 h. These excellent properties are similar to those of state‐of‐the‐art 20 % Pt/C and make the catalyst one of the most active acid‐stable electrocatalysts ever reported for HER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号