首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel-pulsed electrolyte cathode atmospheric pressure discharge (pulsed-ECAD) plasma source driven by an alternating current (AC) power supply coupled with a high-voltage diode was generated under normal atmospheric pressure between a metal electrode and a small-sized flowing liquid cathode. The spatial distributions of the excitation, vibrational, and rotational plasma temperatures of the pulsed-ECAD were investigated. The electron excitation temperature of H Texc(H), vibrational temperature of N2 Tvib(N2), and rotational temperature of OH Trot(OH) were from 4900?±?36 to 6800?±?108 K, from 4600?±?86 to 5800?±?100 K, and from 1050?±?20 to 1140?±?10 K, respectively. The temperature characteristics of the dc solution cathode glow discharge (dc-SCGD) were also studied for the comparison with the pulsed-ECAD. The effects of operating parameters, including the discharge voltage and discharge frequency, on the plasma temperatures were investigated. The electron number densities determined in the discharge system and dc-SCGD were 3.8–18.9?×?1014?cm–3 and 2.6?×?1014 to 17.2?×?1014?cm–3, respectively.  相似文献   

2.
The feasibility of using double Langmuir probes to measure electron temperature (Te) in an Ar inductively coupled plasma (ICP) was evaluated. Experimental methods for probing the plasma and for reducing rf interference were devised. Despite these measures, the probe signal was noisy and erratic if the ICP had the normal analytical configuration with a hole through its center, so measurements were restricted to an ICP without an axial channel. Theoretical criteria indicated that Langmuir probe measurements in an atmospheric pressure ICP were in a borderline regime in which the measured Te values may have been depressed somewhat (relative to the actual Te values in the ICP) due to cooling of electrons as they approached the probe. The Te values obtained from the center of the ICP were 7500 K at a forward power of 1.0 kW and 10 000 K at 1.25 kW for a measurement position 8 mm above the load coil. Electron density (ne) measurements by the Langmuir probe method were comparable to or higher than ne values calculated from the Saha equation at the measured Tes. The Te and ne values were high enough to indicate that, if electron cooling and ion-electron recombination occurred near the probes, these effects were not extreme and/or the use of two probes compensated for them in some fashion. The probe measurements also indicated that Te increased with the potential difference between the probes. This latter observation provided tentative evidence that the electron kinetic energy distribution was non-Maxwellian with an excess of higher energy electrons relative to lower energy electrons.  相似文献   

3.
Li-metal batteries (LMB), although providing high energy density, face the grand challenge of identifying good electrolyte solvents for cycling. Common solvents are either only stable against lithium metal anode or only stable against LiNixMnyCo1-x-yO2 (NMC) cathode. There is significant effort trying to increase the cathode stability for ether electrolytes, which are in general stable against lithium metal anode. In comparison, there is much less effort trying to increase the anode stability of electrolytes that are stable against NMC cathode. One example is the sulfone-based electrolyte. It has good cathode stability but is hindered from practical application because of (1) high viscosity and poor wetting capability and (2) poor anode stability. Here, we solve these issues by modifying the sulfone molecules using resonance and electron withdrawing effect. The viscosity is significantly reduced by delocalizing the electrons through introducing additional oxygen on the molecular backbone and applying appropriate fluorination. The resulting molecule 2,2,2-trifluoroethyl mesylate (TFEM) has decreased Lewis basicity and less reactivity toward Li+. The electrolyte based on TFEM as single solvent enables cycling of LMB under harsh conditions of low N/P ratio (21 mg/cm2 NMC811 and 50 μm Li) with 90 % capacity retention after 160 cycles at C/3 discharge rate.  相似文献   

4.
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H2O vapor, N2, and O2 diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (Trot) and electron number density (ne), were also measured in the APGD. Maximum values for Trot and ne were found to be ~1100 K and ~4 × 1019 m–3, respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N2+ yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N2+ temperature is believed to be caused by charge-transfer ionization of N2 by He2+. These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source.  相似文献   

5.
The miniaturized atmospheric pressure glow discharge (APGD) generated between a solid electrode and a flowing small size liquid cathode (dimension 2 mm) was investigated here using optical emission spectroscopy. The discharge was studied in an open air atmosphere, and the spectral characteristics of the plasma source was examined. Analysed APGD was operated at a discharge voltage of 1,100–1,700 V, a discharge current of 20 mA and gaps between a solid anode and a liquid cathode in the range from 0.5 to 3.5 mm. The emission intensities of the main species were measured as a function of various experimental conditions, including the solution flow rate, the gap between the electrodes, and the concentration of hydrochloric acid. The excitation temperature, the vibrational temperatures calculated from N2, OH, and NO bands, and the rotational temperatures determined from band of OH, N2 and NO, were found to be dependent on these experimental parameters. The electron number density was determined from the Stark broadening of Hβ line. Additionally, the ionization temperature and degree were calculated using the Saha–Boltzmann equation, with the ion to atom ratio for magnesium (MgII/MgI). The results demonstrated that T exc(H), T vib(N2), T vib(OH), T vib(NO) and T rot(OH) were well comparable (~3,800–4,200 K) for selected plasma generation conditions (gap ≥2.5 mm, HCl concentration ≥0.1 mol L−1), while the rotational temperatures determined from band of N2 (~1,700–2,100 K) and band of NO (~3,000 K) were considerably lower. The electron number density was evaluated to be (3.4–6.8) × 1020 m−3 and the ionization temperature varied, throughout in the 4,900–5,200 K range.  相似文献   

6.
The application of a tuned Langmuir probe to the measurement of the charged particle characteristics of electron number density, ion number density, electron energy distribution function, average electron energy and electron temperature, in an analytical radio frequency (r.f.)-glow discharge is described. Studies focus on the roles of discharge operating conditions and plasma sampling position for conductive (copper) and nonconductive (Macor) samples. Based on the data obtained here, apparent differences in plasma characteristics between conductive and nonconductive samples can be reasonably explained. For example, the sputtering of conductive samples results in plasmas with obviously higher electron and ion number densities than the sputtering of nonconductive samples (e.g. ni = 1.8 × 1010 cm−3 and ne = 1.5 × 109 cm−3 for copper, and ni = 8 × 109 cm−3 and ne = 5 × 108 cm−3 for Macor under the conditions of argon pressure = 4 Torr, r.f. power = 30 W and sampling distance = 4.5 mm). Conversely, nonconductive samples yield electrons with higher energies (average electron energies of 15 and 7.5 eV and temperatures of 6.5 and 3.5 eV respectively for the Macor and copper samples). Lower d.c. bias potentials for the case of sputtering nonconductive samples yield reduced sputtering rates and charged particle densities, though the electrons in the latter case have higher energies and thus improved excitation capabilities. The differences between r.f.- and d.c.-glow discharge optical emission spectra are also discussed relative to reported electron energy characteristics. Studies such as these will lay the ground-work for extensive evaluation of inter-matrix type standardization for r.f.-glow discharge atomic emission spectrometry.  相似文献   

7.
A laser-scattering-based instrument was used to study an argon d.c. planar-diode glow discharge. The gas-kinetic temperature (Tg) was determined via Rayleigh scattering and the electron number density (ne), electron temperature (Te), and shape of the electron energy-distribution function were determined by Thomson scattering. Axial profiles of these parameters were obtained as the discharge current, voltage, and pressure were varied. Trends in the profiles of Tg and in the other parameters show the interdependence of these plasma species and properties. The results will be compared with current theoretical computer models in order to improve our understanding of the fundamental processes in glow discharges sustained under conditions appropriate for spectrochemical analysis.  相似文献   

8.
The behavior of inductively coupled plasmas for spectroscopic purposes has been studied extensively in the past. However, many questions about production and loss of electrons, which have a major effect on this behavior, are unanswered. Power interruption is a powerful diagnostic method to study such processes. This paper presents time resolved Thomson scattering measurements of the electron density ne and temperature Te in an inductively coupled argon plasma during and after power interruption. In the center of the plasma the measured temporal development of ne and Te can be attributed to ambipolar diffusion, three-particle recombination and ionization. However, at the edge of the plasma an additional electron loss process must be involved. In addition, the high electron temperature during power interruption indicates the presence of an electron heating mechanism. The energy gain by recombination processes is shown to be insufficient to explain this electron heating. These discrepancies may be explained by the formation and destruction of molecular argon ions, which can be present in significant quantities.  相似文献   

9.
10.
We propose a new type of capacitive plasma source with a mesh grid to solve the problems of previous low pressure discharges, the inability to control the electron density and temperature independently, i.e. just one value of electron temperature is possible for a given electron density. While varying the grid bias and the discharge current, various electron temperatures are possible for a given electron density, and the electron density and temperature can be controlled from 4 × 108 cm-3 to 1 × 1010cm-3 and from 1 to 4 eV, respectively.  相似文献   

11.
Measurements of rotational temperature as low as several hundred Kelvin have been measured using optical emission spectroscopy (OES) in nitrogen direct current (DC) glow discharge. The strongest band of the first negative system of nitrogen was chosen to deduce the rotational temperature at four different positions in nitrogen DC glow discharge, the back of cathode; cathode sheath; positive column; and anode glow. In positive column the rotational temperature increased apparently with the increasing discharge voltage from 500 to 1000 V when the pressure was 10 Pa. But with pressure of 20 Pa the rotational temperature in positive column increased slightly with the increase of discharge voltage. On the contrary, the rotational temperature in cathode sheath took reverse tendencies when the discharge voltage varies from 500 to 1000 V. As regard the anode glow, the rotational temperature at 10 Pa decreased with the increase of discharge voltage, but that at pressure of 20 Pa increased. We attribute the different tendencies of the rotational temperature to the different discharge statues at different pressures. When the discharge voltage varies from 500 to 1100 V, the discharge with pressure of 10 Pa is normal glow and that with 20 Pa is abnormal glow.  相似文献   

12.
This paper presents the results of the spectroscopic study of the cathode fall region of a plane cathode Grimm-type glow discharge in pure hydrogen and in argon with small admixtures of hydrogen. In contrast with the discharge in an argon-hydrogen mixture, the volt-ampere characteristics of the pure hydrogen discharge show a maximum typical for an abnormal glow-to-arc transition. This maximum in the V-A curve is explained here as being due to the increasing role of self-sputtering of the cathode material in sustaining the discharge at higher currents.For the measurements of the electric fields in the cathode fall region, Stark spectroscopy of the hydrogen Balmer lines is employed. Consistent results were obtained from Hβ and Hγ recordings in a pure hydrogen discharge. Some of the difficulties in applying Stark spectroscopy for the diagnostics of a spatially inhomogeneous electric field inherent to Grimm glow discharges are discussed in detail. The experimental results are used to test the theoretical predictions of the electric field distribution in the cathode fall region. Reasonable agreement between theories and experiment is reported.Doppler spectroscopy of the same Balmer lines is used to determine the energies of the excited hydrogen atoms in the discharge. In the cathode fall region of a pure hydrogen discharge, two groups of excited atoms are detected: “slow”, in the range 3.4–8.2 eV, and “fast”, in the range 80–190 eV. The relative concentrations of “slow” and “fast” excited hydrogen atoms in the cathode fall region are determined. In addition, the relative concentration of hydrogen atoms with temperatures around 0.1 eV, excited in the plasma of the negative glow region, is also determined. The origin of these “slow” and “fast” hydrogen atoms is related to the presence of H+ and H3+ ions, respectively. In the cathode fall region of an argon-hydrogen mixture discharge, only excited hydrogen neutrals with energies of 32–43 eV are detected. Their origin is related to the dominant role of H3+ ions in this discharge. For both gases, in the negative glow region, an increase in the temperature of excited hydrogen atoms is detected, and is explained by the additional excitation of energetic neutrals in collisions with electrons.The axial intensity distributions of the hydrogen Balmer lines, in comparison with other atomic and ionic lines, show different shapes with maxima in the vicinity of the cathode surface. These shapes are explained by the excitation of reflected high-energy neutral atoms in collisions with the matrix gas.  相似文献   

13.
A new mechanism Of H2 dissociation in electrical discharges (1011 ? ne ? 1012 cm?3, 2.10?16 ? E/N ? 3.10?16 V cm2, 300 ? Tg ? 1000 K, 3 ? p ? 30 torr) is presented and discussed. In this mechanism, called joint vibro-electronic mechanism (JVE), the electrons of the discharge create a strong vibrational disequilibrium with respect to the gas temperature (Tg) and promote electronic transitions from all vibrational levels of 1Σg H2 state to the repulsive 3Σu one. Moreover the V-V (vibration-vibration) and V-T (vibration-translation) energy exchanges are considered for building up the vibrational distribution of 1Σg state. A complete set of e - D cross sections (e + H2(1Σg,ν) → e + H2 (3Σu) → + 2H, ν = 0,14) is calculated by using an extension of the semiclassical Gryzinski theory in combination with the Franck-Condon principle. Dissociation rates calculated according to JVE are larger either than those obtained by the pure vibrational mechanism (PVM) discussed in our previous work or than those from the direct electronic impact mechanism (DEM) from the ground vibrational level. The behaviour of JVE rates as a function of gas temperature (Tg), of E/N, of electron density (ne) and of pressure is then reported. The results show strong differences as compared, with the corresponding values obtained, with PVM. Finally the influence of the atoms as well as their recombination on the dissociation rates is discussed. The results have been obtained by solving a system of vibrational master equations.  相似文献   

14.
The absorbance by metastable argon atoms of the Ar 696.543 nm line in the modified Grimm-type electrical discharge source was measured at different discharge conditions and at distances varying from 0.25 to 6 mm from the cathode. A uranium/argon hollow cathode lamp was used as primary source, which gave an argon gas temperature of 850 K when run at 12 mA. A maximum absorbance of 0.57 was found 3 mm from the cathode at 600 V, 80 mA. The magnitude of absorbance increases with discharge current while the position of maximum absorbance shifts away from the cathode with increase in discharge voltage. The quenching of metastable atoms by nitrogen is demonstrated.The spatial distribution of the intensity of four different types of spectral lines is shown. The approximate number densities of the different particles are 1012cm?3 for metastable argon atoms, 1016cm?3 for neutral argon atoms, 1013 cm?3 for sputtered copper atoms and 1014cm?3for electrons.  相似文献   

15.
Dynamic nuclear polarization (DNP) increases NMR sensitivity by transferring polarization from electron to nuclear spins. Herein, we demonstrate that electron decoupling with chirped microwave pulses enables improved observation of DNP‐enhanced 13C spins in direct dipolar contact with electron spins, thereby leading to an optimal delay between transients largely governed by relatively fast electron relaxation. We report the first measurement of electron longitudinal relaxation time (T1e) during magic angle spinning (MAS) NMR by observation of DNP‐enhanced NMR signals (T1e=40±6 ms, 40 mM trityl, 4.0 kHz MAS, 4.3 K). With a 5 ms DNP period, electron decoupling results in a 195 % increase in signal intensity. MAS at 4.3 K, DNP, electron decoupling, and short recycle delays improve the sensitivity of 13C in the vicinity of the polarizing agent. This is the first demonstration of recovery times between MAS‐NMR transients being governed by short electron T1 and fast DNP transfer.  相似文献   

16.
We investigated the characteristics of atmospheric pressure (AP) air glow discharge with aqueous electrolyte cathode. Distilled water or aqueous solutions of HNO3, KCl, KBr and KI were utilized as a cathode. The cathode voltage drop, electric field strength, gas temperature as well as emission intensity of some lines of OI, H, K, Na and bands of N2, OH, NO were measured at discharge current from 10 to 50 mA. The procedure of gas temperature measurement on the base of non-resolved structure of N2(C3Πu → B3Πg) bands was described. The reduced electric field strength (E/N) was obtained, which showed that the discharge existed in the normal mode. On the base of these data, the regularities of optical emission were discussed.  相似文献   

17.
The effects of adding foreign gases to the central-gas flow or the intermediate-gas flow of an argon inductively coupled plasma are presented. In particular, the influence of up to 16.7% added helium, nitrogen or hydrogen on radially-resolved electron number density, electron temperature, gas-kinetic temperature and calcium ion emission profiles is examined. It is shown that these gases affect not only the fundamental parameters and bulk properties of the plasma, but also how energy is coupled and transported through the discharge and how that energy interacts with the sample. For example, added helium causes an increase in the gas-kinetic temperature, most likely due to the higher thermal conductivity of helium compared to argon but, in general, does not appear to affect significantly either the electron temperature or electron concentration. The shift in the calcium ion emission profile towards lower regions in the discharge with added helium may be attributable to higher droplet desolvation and particle vaporization rates. In contrast, the addition of nitrogen or hydrogen to an Inductively Coupled Argon Plasma (Ar ICP) results in dramatic changes in all three fundamental plasma parameters: electron number density, electron temperature, and gas-kinetic temperature. The net effect of these molecular gases (N2 or H2) on calcium ion emission and on the fundamental plasma parameters is shown to be dependent on the amount of gas added to the plasma and whether the gas is introduced as part of the central- or intermediate-gas flow. In general, nitrogen added to the central-gas flow causes a significant reduction in the number of electrons throughout most of the discharge (over an order of magnitude in certain regions), mainly in the central and upper zones of the ICP. A drop of 3000–5000 K in the central channel electron temperature and a smaller drop in the gas-kinetic temperature are also observed when N2 is added to the central-gas flow. In contrast, the introduction of nitrogen in the intermediate flow causes about a 1 × 1015 electrons cm−3 increase in the electron concentration in the low, toroidal regions of the plasma and an increase in the gas-kinetic temperature of around 1000 K throughout most of the discharge. As seen with the addition of nitrogen to the central-gas flow, the electron temperature is found to increase in the toroidal zones of the plasma when N2 is added to the intermediate flow. These combined effects cause a 20-fold depression in the calcium ion emission intensity only a 1.7-fold depression when N2 is added to the central- or intermediate-gas flows, respectively. On the other hand, hydrogen causes a depression in the electron concentration in the upper areas of the plasma when this gas is added to the central flow but increases the number of electrons in the same region when added to the intermediate flow. Hydrogen also causes a dramatic effect on the electron and gas-kinetic temperatures, significantly increasing both of these parameters throughout the discharge. An increase in the calcium ion emission intensity, accompanied by a downward shift, elongation and broadening of the calcium ion emission profile is also observed with H2 addition.  相似文献   

18.
Dissociation rates of molecular hydrogen in electrical discharges have been calculated at different electron (Te) and gas (Tg) temperatures (10000 Te 23000 K, 500 Tg 4000 K), at different pressures p (5 p 50 torr) and electron number densities ne (0 ne 1012 cm−3).The results have been obtained by solving a system of master equations, including V---T (vibration-translation), V---V (vibration---vibration) and e---V (electron---vibration) microscopic processes.The results obtained at ne ≠ O show a “laser-type mechanism” in the dissociation of molecular hydrogen in electrical discharges. In particular one notices a strong increase of dissociation rates with decreasing gas temperature and pressure.The results show that this mechanism is as important as the mechanism of direct dissociation by electron impact.  相似文献   

19.
Nonequilibrium vibrational distributions and dissociation rates of molecular oxygen in both electrical and thermal conditions have been calculated by solving a system of master equations including V-V (vibration-vibration), V-T (vibration-translation) and e-V (electron-vibration) energy exchanges. The dissociation constant under thermal conditions (i.e. without electrons) follows an Arrhenius law with an activation energy of 120 kcal/mole, while the corresponding rates under electrical conditions (5000 ? Te ? 15000 K, 300 ? Tg ? 1000 K, 1011 ? ne ? 1012 cm?3,5 ? p ? 20 torr) increase with decreasing gas (Tg) and electron (Te) temperatures and pressure (p) and with increasing electron density (ne). These results are explained on the basis of the different interplay of V-V and V-T energy exchanges and are rationalized by means of simplified models proposed in the literature. The accuracy of the present results is discussed paying particular attention to the dependence of V-V and V-T rate coefficients on the vibrational quantum number. A comparison of the calculated dissociation rates with the corresponding ones obtained by the direct electron impact mechanism shows that the present mechanism prevails at low electron and gas temperatures. Finally a comparison is shown between theoretical and experimental dissociation rates under electrical and thermal conditions.  相似文献   

20.
In this work, light emissions and radicals formed by plasma of contact glow discharge electrolysis were investigated. The plasma was generated by glow discharges at the tip of a Pt anode in contact with a sulfuric acid solution. Emissions of H atoms and OH radicals were observed when the applied voltage was above 430 V. When the applied voltage increased to 450 V, emissions of O atoms were additionally detected. The emission intensities of these radicals and atoms increased with the increasing applied voltage. When the applied voltage exceeded 460 V, thermal radiation from the Pt anode was apparent in the visible and near infrared region. Electron temperature of the plasma increased with the applied voltage from 1.0 × 104 to 1.5 × 104 K by comparison of the intensities of Hα and Hβ lines. The mean electron density was estimated to be 7.4 × 1017 cm−3 by the method of Stark broadening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号