首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

2.
A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).  相似文献   

3.
Two new mononuclear lanthanide(III) complexes Ln(pytz)3(H2O)3·(H2O)3.5[Ln=Tb(1); Eu(2); Hpytz= 5-(2-pyridyl)tetrazole] were synthesized by reacting Hpytz with the corresponding lanthanide(III) ions and characterized. The single crystal X-ray diffraction analysis reveals that complexes 1 and 2 are isostructural and the lanthanide(III) ions in both complexes 1 and 2 are nine-coordinated, with three oxygen atoms of three coordination water molecules and six nitrogen atoms of three pytz ligands, forming a monocapped square antiprism. Extensive hydrogen bonds exist, resulting in a three-dimensional supramolecular network structure by hydrogen-bonds in both complexes 1 and 2, respectively. Complex 1 exhibits typical green fluorescence of Tb(III) ion and complex 2 red fluorescence of Eu(III) ion, in solid state at room temperature.  相似文献   

4.
Lanthanide(III) complexes of the general formula [Ln(ACAB)(2)(NO(3))(2)(H(2)O)(2)].NO(3).H(2)O where Ln=La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III) and Y(III), ACAB=3-acetylcoumarin-o-aminobenzoylhydrazone have been isolated and characterised based on elemental analyses, molar conductance, IR, (1)H- and (13)C-NMR, UV, TG/DTA and EPR spectral studies. The ligand behaves in bidentate fashion coordinating through hydrazide >C=O and nitrogen of >C=N. A coordination number of ten is assigned to the complexes. Antibacterial and Antifungal studies indicate an enhancement of activity of the ligand on complexation.  相似文献   

5.
A novel 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone ligand and its four complexes, [LnL2(NO3)2]NO3 [Ln = Eu(1), Sm(2), Tb(3), Dy(4)], were synthesized. The complexes were characterized by the elemental analyses, molar conductivity and IR spectra. The crystal and molecular structure of Sm(III) complex was determined by single-crystal X-ray diffraction: crystallized in the triclinic system, space group P-1, Z = 1, a = 11.037(4) A, b = 14.770(5) A, c = 15.032(7) A, alpha = 60.583(4), beta = 75.528(7), gamma = 88.999(4), R1 = 0.0349. The fluorescence properties of complexes in the solid state and in the organic solvent were studied in detail, respectively. Under the excitation of ultraviolet light, strong red fluorescence of solid europium complex was observed. But the green fluorescence of solid terbium complex was not observed. These observations show that the ligand favor energy transfers to the emitting energy level of Eu3+. Some factors that influence the fluorescent intensity were also discussed.  相似文献   

6.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

7.
Six complexes of rare earth nitrates (Ln=La, Sm, Eu, Gd, Tb, Dy) with a new amide type ligand, N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and and 1H NMR spectra. Under excitation, Eu(III) and Sm(III) complexes exhibited strong red emissions. And the luminescence intensity of Sm(III) complex is higher than that of Eu(III) complex. Thus the Eu(III) and Sm(III) complexes are the potential light conversion agent. However, the Tb(III) and Dy(III) complexes cannot exhibit characteristic emissions of terbium and dysprosium ions, respectively. The results of phosphorescence spectrum show that the triplet-state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. In addition, the luminescence of the Eu(III) complex is also relatively strong in highly diluted tetrahydrofuran solution (2 x 10(-4)mol/L) compared with the powder. This is not only due to the solvate effects but also to the changes of the structure of the Eu(III) complex after being dissolved into the solvents. Furthermore, owing to the co-luminescence effect, the proper La(III) or Gd(III) doped Eu(III) complexes show stronger luminescence than the pure Eu(III) complex.  相似文献   

8.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

9.
The polymeric lanthanide complexes (Ln(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2 (H2O)4.xH2O)n [Ln=La (1), Eu (2), Gd (3)], formed from the reaction of aqueous solutions of anisolesquarate and Ln(NO3)3.xH2O, are all structurally similar with only subtle differences between the lanthanum complex and the isomorphous pair of europium and gadolinium analogues. The lanthanum atom in 1 has a square antiprismatic coordination geometry comprising two pendant and two mu-1,3-bridging anisolesquarate groups and four aqua ligands. Complexes 2 and 3 have two independent metal atoms in their asymmetric units compared to one for the lanthanum complex. However, the gross structures of 1-3 are essentially the same. The asymmetric unit of the terbium complex ((CH3OC6H5C4O3)3Tb(H2O)4(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2Tb(H2O)5).H2O (4) contains two independent binuclear units which hydrogen bond to form an extended structure very similar to those of 1-3. The ionic polymers ([Ln(mu2-C4O4)(H2O)6][C6H5NHC4O3].4H2O)n [Ln=Eu (5), Gd (6), Tb (7)] result from the incomplete hydrolysis of the anilinosquarate ion during the attempted synthesis of Eu(III), Gd(III), and Tb(III) anilinosquarate complexes. However, complete hydrolysis of the substituent is accomplished by La(III) ions, and the neutral polymer (La2(mu2-C4O4)2(mu3-C4O4)(H2O)11.2H2O)n (8) is formed. In complexes 5-7, the central lanthanide atom has a square antiprismatic geometry, being bonded to two mu-1,2-bridging squarate and six aqua ligands. Two anilinosquarate counteranions participate in second-sphere coordination via direct hydrogen bonding to aqua ligands on each metal center. These counteranions, and the included waters of crystallization, serve to link neighboring cationic polymer chains via an extensive array of O-H...O hydrogen bonds to form a 3-dimensional network. The polymeric lanthanum complex 8 contains two different metal environments, each having distorted monocapped square antiprismatic geometry. For one lanthanum atom the coordination polyhedron comprises five aqua and four squarate ligands, while for the other the polyhedron consists of six aqua and three squarate ligands; in each case one of the aqua ligands occupies the capping position. The squarate ligand exhibits two coordination modes in 8 (mu-1,2- and mu-1,3-bridging), and neighboring polymer chains are cross-linked by hydrogen bonds to form a 3-dimensional network.  相似文献   

10.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

11.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

12.
Solid complexes Ln(Sal)3.H2O (Sal: salicylic acid; Ln: La3+, Nd3+, Eu3+, Tb3+) are synthesized, and their photoacoustic (PA) spectra in the UV-Vis region have been recorded. PA intensities of central lanthanide ions are interpreted in terms of the probability of nonradiative transitions. It is found that PA intensity of the ligand increases in the order of Tb(Sal)3.H2O < La(Sal3).H2O < Eu(Sal)3.H2O < Nd(Sal)3.H2O. Different PA intensities of the ligand are interpreted by comparison with the fluorescence spectra. Ternary complexes Eu(Sal)3Phen and Tb(Sal)3Phen (Phen: 1,10-phenanthroline) are synthesized. Compared with their binary complexes, PA intensity of the ligand Sal decreases for Eu(Sal)3Phen, while the reverse is true for that of Tb(Sal)3Phen. The luminescence of Eu3+ increases remarkably when Phen is introduced, and luminescence of Tb3+ decreases greatly when Phen is added. The intramolecular energy transfer and relaxation processes in the complexes are discussed from two aspects: radiative and nonradiative relaxations.  相似文献   

13.
稀土配合物的发光特性及其能量传递研究   总被引:18,自引:0,他引:18  
利用激光诱导荧光技术研究了稀土铕等金属配合物的发光特性及其能量传递动力学过程.得到了这些稀土配合物中中心离子Eu(3 )的激发光谱,配体的三线态发时光谱和单线态发射光谱;在实验上观察到由于中心离子Eu(3 )的5D2←7F0马跃迁吸收造成的配体发射光谱中的凹陷行为  相似文献   

14.
合成了铽与1-苯基-3-甲基-4-异丁酰基吡唑啉-5-酮(HPMIBP)、1-苯基-3-甲基-4-苯甲酰基吡唑啉-5-酮(HPMBP)的四个三元配合物Tb(PMIBP)3.2H2O(A1), Tb(PMIBP)3.bpy(A2), Tb(PMBP)3.2H2O(B1)和Tb(PMBP)3.bpy(B2)(bpy=2, 2'-联吡啶)。用元素分析确定了它们的组成, 并用紫外-可见光谱、红外光谱、差热-热重谱对其进行了表征。研究了它们在固态和溶液中的荧光光谱, 并用频域法测定了它们在溶液中的荧光寿命, 结果表明A1和A2的荧光强度比相应的B1和B2强三个数量级, A2与A1或B2与B1相比, 荧光强度也有一定程度的增强,并且不同溶剂对其荧光强度和荧光寿命都有较大的影响。  相似文献   

15.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

16.
Trinuclear lanthanide complexes of the formula [Ln(3)(PPDA)(NO(3))(6)(H(2)O)(2)].NO(3).2H(2)O where Ln=La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H(2)PPDA=N,N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.  相似文献   

17.
The coordination properties of the macrocyclic receptor N,N'-bis[(6-carboxy-2-pyridyl)methylene]-1,10-diaza-15-crown-5 (H(2)bp15c5) towards the lanthanide ions are reported. Thermodynamic stability constants were determined by pH-potentiometric titration at 25 °C in 0.1 M KCl. A smooth decrease in complex stability is observed upon decreasing the ionic radius of the Ln(III) ion from La [log K(LaL) = 12.52(2)] to Lu [log K(LuL) = 10.03(6)]. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes confirm the absence of inner-sphere water molecules in these complexes. (1)H and (13)C NMR spectra of the complexes formed with the diamagnetic La(III) metal ion were obtained in D(2)O solution and assigned with the aid of HSQC and HMBC 2D heteronuclear experiments, as well as standard 2D homonuclear COSY and NOESY spectra. The (1)H NMR spectra of the paramagnetic Ce(III), Eu(III) and Yb(III) complex suggest nonadentate binding of the ligand to the metal ion. The syn conformation of the ligand in [Ln(bp15c5)](+) complexes implies the occurrence of two helicities, one associated with the layout of the picolinate pendant arms (absolute configuration Δ or Λ), and the other to the five five-membered chelate rings formed by the binding of the crown moiety (absolute configuration δ or λ). A detailed conformational analysis performed with the aid of DFT calculations (B3LYP model) indicates that the complexes adopt a Λ(λδ)(δδλ) [or Δ(δλ)(λλδ)] conformation in aqueous solution. Our calculations show that the interaction between the Ln(III) ion and several donor atoms of the crown moiety is weakened as the ionic radius of the metal ion decreases, in line with the decrease of complex stability observed on proceeding to the right across the lanthanide series.  相似文献   

18.
A new amide-based 1,3,4-oxadiazole derivative ligand 2,5-bis[2-(N,N-diethyl-1'-oxopropylamide)phenyl]-1,3,4-oxadiazole (L) and its complexes, Ln(NO3)3L (Ln=La, Eu, Gd, Tb, Er), were synthesized. The complexes were characterized by elemental analysis, infrared spectra and conductivity. The lanthanide ions were coordinated by O atoms from CO. The fluorescence properties of Eu(NO3)3L and Tb(NO3)3L in the solid state and in different solvents were investigated. Under the excitation of UV light, these complexes exhibit characteristic fluorescence of europium and terbium ions. The solvent factors influencing the fluorescent intensity were discussed.  相似文献   

19.
Solid complexes of lanthanide nitrate with 1,4-di(N,N-di-n-butyl-acetamido)-quinoxaline-2,3-dione (L), [Ln(N03)3L.H2O] (Ln=La, Nd, Eu, Gd, Tb, Er), have been prepared and characterized by elemental analysis, IR, UV-vis spectra and conductivity measurements. The fluorescence property of the europium complex in solid state and in MeCN, acetone, AcOEt and THF was studied. Under the excitation, the europium complex exhibited characteristic emissions of europium. The result indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

20.
Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01?M Tris-HCl, pH?7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C?NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1)?ms and ?(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1)?the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2)?marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3)?unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu energy-transfer process. A mathematical model was developed to interpret the experimental data, leading to energy-transfer rates of 0.98?ms(-1) for the transfer from the site with q=0 to that with q=2 and vice versa. Hartree-Fock (HF) and density functional theory (DFT) calculations performed at the B3LYP level were used to investigate the conformation of the complex in solution, and to estimate the intermetallic distance, which provided F?rster radii (R(0)) values of 8.1?? for the energy transfer from site I to site II, and 6.8?? for the reverse energy transfer. These results represent the first evidence of an intramolecular energy-transfer equilibrium between two identical lanthanide cations within a discrete molecular complex in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号