首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The species UO2(DMSO) 5 2+ is shown from1H NMR studies to be the predominant dioxouranium(VI) species existing in dilute anhydrous acetonedimethyl sulfoxide (DMSO) solutions, and this result is compared with data reported for the analogous water-acetone-dimethyl sulfoxide system. Complete line-shape analyses of exchange-modified1H NMR line shapes indicate that the mechanism for DMSO exchange on UO2(DMSO) 5 2+ is probably of theD orI D type. A typical set of rate parameters arek ex (260°K) =273±14 sec–1, H #=38.9±0.5 kJ-mole–1, and S #=–47.5±1.8 J-oK–1-mole–1 for a solution in which [UO2(DMSO)5 2+], [DMSO], and [d 6 acetone] are, respectively, 0.01155, 0.0875, and 13.00 moles-dm–3.  相似文献   

3.
4.
5.
6.
The metal-exchange reaction between Cd-deuteroporphyrin or Cd-ematoporphyrin and ZnCl2 in dimethyl sulfoxide (DMSO) was studied spectrophotometrically. The order and activation parameters of the reaction of Cd2+ replacement by zinc ions were calculated. A mechanism of this reaction is suggested. The results are compared with the available data on metal-exchange reactions between Cd-mesoporphyrin and Cdprotoporphyrin and ZnCl2 in DMSO.  相似文献   

7.
8.
Reaction Of UO2(O2CCH3)2 with pentafluorobenzoic acid yields UO2(O2CC6F5)2, which has been converted into the solvated complexes UO2(O2CC6F5)2L2·S [L2 = 2,2′-bipyridyl (bpy), S = 0.33 (PhH) or 0.07 (t-BuOH); L = Ph3PO, S = t-BuOH; L = Ph3AsO, S = 0.40 (t-BuOH)] and the solvent free UO2(O2CC6F5)2L2 [L2 = bpy; L = Ph3PO]. The crystal structure of UO2(O2CC6F5)2bpy (orthorhombic, space group P212121; a = 18.45(2), b = 18.94(2), c = 7.069(8) Å, Z = 4] reveals distorted hexagonal bipyramidal stereochemistry with a trans UO2 group, chelating pentafluorobenzoate ligands, and chelating 2,2′-bipyridyl, which is significantly displaced from the hexagonal plane. The structure of UO2(O2CC6F5)2(OPPh3)2·t-BuOH [rhombohedral, space group R3; a = 21.51(3) Å, α = 117.28(5)°, Z = 3] shows trans UO2, pseudo trans Ph3PO ligands, and one unidentate and one disordered chelating pentafluorobenzoate ligand, whilst t-BuOH could not be located because it is highly disordered. Relationships between ν (CO2) frequencies and the carboxylate coordination are discussed, and UO2(O2CC6F5)2(OAsPh3)2.0.40 (t-BuOH) is considered to have stereochemistry similar to that of the phosphine oxide complex. The complexes undergo decarboxylation in dimethyl sulphoxide yielding pentafluorobenzene and carbonatodioxouranium(VI) species not UO2(C6F5)2 derivatives.  相似文献   

9.
A range of rare earth metal complexes of 2-mercaptopyridine N-oxide (Hmpo) have been synthesized, and studied by elemental analysis and IR spectroscopic technique. Crystal structure of Dy(mpo)3(DMSO)2 (DMSO = dimethyl sulfoxide) has been determined. The complex crystallizes in the triclinic system, space group Pī with lattice parameters: a = 9.602(3), b = 9.803(3), c = 15.498(5)A, α= 89.51(1), β= 85.73(1), γ= 62.99(1)°, Dc = 1.787 g/cm3, C19H24N3O5S5Dy, Mr = 697.21, Z = 2, F(000) = 690, μ = 3.321mm-1, the final R = 0.0237 and wR = 0.0587 for 4116 reflections with I>σ2(I). The coordination number of dysprosium Ⅲ is eight, and its coordination geometry is a somewhat distorted square antiprism with O(3), O(4), O(5), S(3) and O(1), O(2), S(1), S(2) at the tetragonal bases (dihedral angle between their mean planes is 2.9(1)0). Around the Dy atom, three five-membered ring planes (Dy, O, N, C, S) make the dihedral angles of 74.42, 11.31 and 83.72, respectively.  相似文献   

10.
The solubility of SO2 and CO2 in dimethyl sulfoxide has been determined in the temperature range from 293.15 to 313.15?K and partial pressure of SO2 from 0.15 to 2.62?kPa, and the partial pressure of CO2 from 5 to 18?kPa. A solubility model is proposed and the solubilities calculated by the model show good agreement with the experimental data.  相似文献   

11.
1 INTRODUCTION Transition-metal thiolato complexes have been of interest for the simulation of many metallo- enzymes where the thiolato group mimics the ligation of cysteinyl residues in proteins. Numerous complexes of transition elements with 1,2-bidentate oxothiolate ligands have been prepared[1~4]. Re- cently, we have studied a few transition metal complexes of 2-mercaptopyridine N-oxide (Hmpo) as bactericidal and antifungal reagents[5~7]. Although Hmpo exhibits unusual versatility…  相似文献   

12.
13.
Hexakis(dimethyl sulfoxide)scandium(III) iodide, [Sc(OS(CH(3))(2))(6)]I(3) contains centrosymmetric hexasolvated scandium(III) ions with an Sc-O bond distance of 2.069(3) angstroms. EXAFS spectra yield a mean Sc-O bond distance of 2.09(1) angstroms for solvated scandium(III) ions in dimethyl sulfoxide solution, consistent with six-coordination. Raman and infrared absorption spectra have been recorded, also of the deuterated compound, and analysed by means of normal coordinate methods, together with spectra of dimethyl sulfoxide. The effects on the vibrational spectra of the weak intermolecular C-H...O interactions and of the dipole-dipole interactions in liquid dimethyl sulfoxide have been evaluated, in particular for the S-O stretching mode. The strong Raman band at 1043.6 cm(-1) and the intense IR absorption at 1062.6 cm(-1) have been assigned as the S-O stretching frequencies of the dominating species in liquid dimethyl sulfoxide, evaluated as centrosymmetric dimers with antiparallel polar S-O groups. The shifts of vibrational frequencies and force constants for coordinated dimethyl sulfoxide ligands in hexasolvated trivalent metal ion complexes are discussed. Hexasolvated scandium(iii) ions are found in dimethyl sulfoxide solution and in [Sc(OSMe(2))(6)]I(3). The iodide ion-dipole attraction shifts the methyl group C-H stretching frequency for (S-)C-H...I(-) more than for the intermolecular (S-)C-H...O interactions in liquid dimethyl sulfoxide.  相似文献   

14.
A complex of bis(hexafluoroacetylacetonato)copper(II) with a stable acyclic nitroxide (tert-butyl)(3-keto-2-methylbutyl-2)nitroxyl oxime (L), Cu(hfac)2L, has been synthesized. The structure of the complex was studied by X-ray diffraction analysis. The compound has a molecular structure with chelate coordination of the nitroxide. The tetragonally distorted octahedral environment of the copper(II) ion is formed by the oxygen atoms of the hfac anions and by the nitrogen and oxygen atoms of the oxime and nitroxyl groups of L, respectively. The nitroxyl group lies in the equatorial plane of the octahedron (dCu?O=1.907 Å). This type of N?O coordination leads to strong antiferromagnetic exchange interactions between the unpaired electrons of the copper(II) ion and the coordinated nitroxyl group and, as a consequence, to diamagnetism of Cu(hfac)2L.  相似文献   

15.
The solubility of CO2 in dimethyl sulfoxide has been determined from 293.15 K to 313.15 K and partial pressure of CO2 from 5.56 kPa to 18.2 kPa. Based on the data obtained from the CO2 solubility experiments, a gas–liquid phase equilibrium model for CO2–DMSO system was proposed. The average relative deviation between the experimental data of equilibrium partial pressure of CO2 in DMSO and the corresponding data predicted by the model proposed is 4.85%, it shows that the agreement is satisfactory.  相似文献   

16.
17.
18.
19.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号