首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
4-Amino-2-alkylimino-2H-thiopyranes (5) and 4-amino-2-alkylaminothiopyranylium halogenides (4) resp. on heating in refluxingDMFA are rearranged in the presence of Na-ethylate to 1-alkyl-4-aminodihydro-2(1H)-pyridinethiones (2). Also 2-methylthiothiopyranylidenammonium iodides (6) and 2-methylthio-4H-thiopyrane-4-one (7) can be transformed into 1-substituted 2(1 H)-pyridinethiones (2) by heating in prim. amines. On treatment with alkali. 4-dimethylaminothiopyranylium iodide (4 a) is transformed into its base5 a and hydrolyzed to8. 5a and8 are rearranged to the pyridinethiones2 a and the tautomers9 A,B. The structure of the rearranged pyridinethiones2 was proved by the1-phenylderivate2 a. Thus 4-methyl-3-penten-2-on reacts with phenylthiourea via the phenylimino-1,3-thiazine (14) to give 3-phenyl-2(1H)pyridinethione (15).15 is transformed by themethylpyrimidine-pyridine-rearrangement to the 1-phenylpyridinethione2 a. The mechanism of theDimroth-reaction of 2-alkylimino-2H-thiopyranes (5) and the stereochemistry of the1-benzyl-6-phenyl-2(1H)-pyridinethiones2 are discussed.  相似文献   

2.
The ESR spectrum of the first representative of highly conjugated triplet ethynylvinylcarbenes, 5-methylhexa-1,2,4-triene-1,3-diyl (1), was recorded in solid argon matrix. The zero-field splitting (ZFS) parameters of carbene 1 (D = 0.5054±0.0006 cm?1 and E = 0.0045±0.0002 cm?1) determined from the experimental ESR spectrum are in between the corresponding parameters of ethynylcarbene C3H2 (2) and vinylcarbene C3H4 (3): D(3) < D(1) < D(2) and E(2) < E(1) < E(3). Quantum chemical calculations of the ZFS parameters of 1, 2, and 3 have been carried out for the first time using two DFT-based approaches, RODFT and UDFT. An analysis of the experimental and theoretical ZFS parameters shows that carbene 1 is characterized by a greater extent of delocalization of the spin density of unpaired electrons than carbenes 2 and 3. The characteristic structural fragments of carbene 1 possess the principal features of the electronic structure of both ethynylcarbene (2) and vinylcarbene (3), respectively. Magnetic spin-spin interactions are identical in carbenes 1 and 2. The dominant contribution to D in 1 and 2 results from the one-center spin-spin interactions on carbon atoms in the propynylidene group, which are subjected to strong spin polarization.  相似文献   

3.
Two isomeric NS2-macrocycles incorporating a xylyl group at ortho (o -L) and meta (m -L) positions were employed and their copper complexes (1?C5) were prepared and structurally characterized. The copper(II) nitrate complexes [Cu(L)(NO3)2] (1: L = o -L, 2: L = m -L) for both ligands were isolated. In each case, the copper center is five-coordinated with a distorted square pyramidal geometry. Despite the overall geometrical similarity, 1 and 2 show the different ligand conformation due to the discriminated packing pattern. Reaction of o -L with copper(II) perchlorate afforded complex 3 containing two independent complex cations [Cu(o -L)(H2O)(DMF)(ClO4)]+ and [Cu(o -L)(H2O)(DMF)]2+; the coordination geometry of the former is a distorted octahedron while the latter shows a distorted square pyramidal arrangement. In the reactions of copper(I) halides (I or Br), o -L gave a mononuclear complex [Cu(o-L)I] (4) with a distorted tetrahedral geometry, while m -L afforded a unique exodentate 2:1 (ligand-to-metal) complex [trans-Br2Cu(m-L)2] (5) adopting a trans-type square-planar arrangement.  相似文献   

4.
Reduction (both catalytically and with complex hydrides) of the diphenyl diketones1 (a, b, c andd withn=0, 2, 3 and 4) was investigated mainly with regard to the diastereomeric ratio of the diols2. For2 a and2 b exact results were obtained by NMR spectroscopy (without or with shift reagents) of the diol mixture (2 a) or after stereoselective cyclization to the cyclic ethers (3 b). AlsoGC andLLC were employed for the analysis of2 a (GC of the trimethylsilyl derivatives) and for the ethers3, resp. (GC for3 a and3 d;LLC for3 b and3 c). The reduction of1 a, 1 b (and in part1 c) proceeds with high stereoselectivity; themeso-diol preponderates in the case of2 a, therac.-diol for2 b and2 c; with increasingn the diastereomeric ratio approaches the statistical ratio of 1∶1. Preparations of the stereoisomeric diols (2 b, c andd via acetylenic precursors) and of the cyclic diphenyl ethers (by stereoselective cyclization and/or chromatographic separation;3 c and3 d for the first time) as well as the determination of their configurations are described. The latter was achieved by NMR and for the ethers3 also by hydrogenation of the corresponding heteroaromatics.  相似文献   

5.
4-Alkylaminopyridinethiones · HCl (1 · HCl) react with bis-trichlorethylmalonate (3) predominantly to 5-alkylamino-4H-thiopyrano [2,3-b]pyridine-4-ones (6). With alcohols in the presence of acids at 25°C6 undergoes an alcoholysis to the corresponding alkyl-3-(2-thioxo-3-pyridyl)propionates (9). On heating in dilute alkali6 is hydrolysed via 4-alkylamino-2-thioxopyridyl-propylketones (11) to the tautomers, 4-hydroxy-2-thioxopyridylpropylketone (12 A) and 2-thioxo-3-(1-hydroxybutenyl)-4-piperidon (12 B), resp. On refluxing with alkali the ethyl-pyridylpropionate9 a is cyclisized to the 1-alkyl-1,6-naphthyridine-2(1H)-one (4 a), but boiling in ethanolic acid hydrolyses9 a via the pyridylpropionic acid10 to 4-alkyl-aminopyridylpropylketone (11 a). The latter can be transformed via the tautomers12 A,B and 2-methylthio-3-pyridylpropylketone (13) to the 4-hydroxy-3-butyrylpyridone (14 A) and its tautomer, 3-(1-hydroxy-butenyl)-piperidine-2,4-diones (14 B) resp. The structure of14 A,B is established by reaction of 4-isopropylamino-2(1H)-pyridone (2) with butanoylchloride to the 4-isopropylamino-3-butyrypyridone (15) and hydrolysis of15 to the tautomers14 A,B.  相似文献   

6.
The basic product synthesized byTraube andSchwarz from mesityl oxide and guanidine has not been 4.4.6-trimethyl-4.5-dihydro-2-pyrimidinamine (1), but a mixture containing the 4.4.6-trimethyl-3.4-dihydro-2(1H)-pyrimidinimine (resp. an isomeric pyrimidinamine)2 a (resp.2 b, 2 c) and the dimeric 4.4′-methylenedi[2(1H)-pyrimidinimine] (resp. an isomeric methylenedipyrimidinamine)3 a (resp.3 b, 2 c) and the dimerisation reaction were studied in a series of experiments. The product of the reaction of guanidine and phorone is not the guanidinopropylpyrimidine8 4, but the 4.4′-spirobi[2(1H)-pyrimidinimine] (resp. a spirobipyrimidinamine)11 a (resp.11 b, 11 c). No determination was possible on the basis of NMR whether the condensation products of guanidine—in solutions ofDMSO-d6—are pyrimidinimines (2 a, 3 a, 11 a) or pyrimidinamines (2 b resp.2 c, 3 b resp.3 c, 11 b resp.11 c) or mixtures of the isomeric compounds. The NMR-and mass spectra of2 a (resp.2 b, 2 c),3 a (resp.3 b, 3 c),11 a (resp.11 b, 11 c) and their derivates are discussed.  相似文献   

7.
Starting from1-(dimethylaminomethyl)-2-iodo-ferrocene (3) [2.2](1,2)ferrocenophane (2) was prepared in an 8-step synthesis with 17% overall yield. Both from the oxoderivative12 and the ferrocenophane2 puretrans-isomers (12b and2b, resp.) were obtained; the former (12b) was reduced to a separable mixture ofexo andendo 1-hydroxy-ferrocenophanes13a andb, resp. (~ 3:7), the configurations of which were assigned by the LIS-method. X-ray crystal structure analysis of2b revealed a centrosymmetrical chair conformation. From1H- and13C-NMR spectra both for2b and for the hydroxyderivatives13 a rigidexo-exo chair conformation was deduced.  相似文献   

8.
Hydrolysis of the 4-alkyliminothiopyrano[2,3-b]pyridinedioles (5) and 4-alkylaminothiopyrano[2,3-b]pyridones (6) resp. with 10% NaOH gives 5,7-dihydroxy-2H-thiopyrano[2,3-b]pyridine-4(3H)-one (7).7 can be obtained in better yield by reaction of 4-dimethylamino-2(1H)-pyridinethione (8) with bistrichlorphenylethylamlonate (2). Aminolysis of7 affords the two isomeric products5 and6. On treatment with hydrazines,7 reacts only to 4-hydrazonoderivatives5. By heating in bromobenzene5d is cyclisized to 1H-5,1,2,6-thiatriaza-acenaphthylen-7-ol (11). On methylation with methyljodide5,6 and7 furnish the 7-methoxyproducts13,14 and12. By heating in 20% NaOH7 is transformed into the 2-thioxo-3-pyridylmethylketone16 A and its tautomer, 2-mercapto-3-pyridylmethylketone16 B. The structures of5,6 and7 are discussed.  相似文献   

9.
Thed,l-(1a) andmeso-forms (1b) of α,α'-dihydroxy-α,α'-dimethyladipic acid, dilactone (3), diiminodilactone (4), and lactonolactam (5) were obtained by the reaction of acetonylacetone with KCN and HCl. The transformations of1 to the esters2, dilactone3 to la, and diiminodilactone4 to dilactone3 were studied. It was shown that3 can be readily obtained from la by thermolysis, acid catalysis, and DCC action as well as by acid catalyzed cyclization of2a, while dilactone3 can be obtained from1b and2b in negligible yield only under drastic conditions, obviously, due to the partial epimirization of themeso-forms. The mild thermolysis of1b leads totrans-lactonoacid (6), from which the ester7 has been obtained. The effective acid catalyzed cyclization of amides8 and9 to3, lactamoamide12 to5, and amide14 to model lactone13 was found. The NMR spectra of the products were studied, and a1H NMR test was suggested for identification ofd,l- andmeso-forms1 and2. The stereochemistry of monolactones6, 7, 9, 10a, 10b, 11, and dilactone3 was established. The differences in the chemical behavior of α,α'-dihydroxyglutaric and adipic acids were explained by the significant reduction of the non-bonded interactions of the substituents in the corresponding monolactones during the transfer from 1,3- to 1,4-substituted systems.  相似文献   

10.
A total of 11 new α,α-dioxoketene- N,S -acetals (2a2k) and two new α,α-dioxoketene- N,N -acetals (3j and 3k) have been synthesised by treating 3-[bis(methylthiol)methylene]pentane-2,4-dione (1) with increasing mole ratios of secondary aliphatic amines at room temperature, in either toluene or ethanol. Eight non-cyclic N -methylalkyl and N -ethylalkyl amines and the azacyclopentane of pyrrolidine yielded exclusively mono-substituted N,S -acetals (2a2i), while the azacyclohexanes of piperidine and morpholine yielded the mono-substituted N,S -acetals 2j and 2k and the double-substituted N,N -acetals 3j and 3k. The conversion yields for the reactions in ethanol are considerably higher than those in toluene. Furthermore, the secondary aliphatic amines with an N -methylalkyl moiety, which have one primary α-carbon and less steric crowding around the nucleophilic nitrogen, appear to be more reactive towards 1 than those with the N -ethylalkyl group, which have two primary α-carbons; further, the latter amines are more reactive than the amines with secondary α-carbons.  相似文献   

11.
The interaction of the enantiopure (R)- and (S)-1-phenyl-N,N-bis(pyridine-3- ylmethyl)ethanamine ligands, R-L 1 and S-L 1 , with copper(II) chloride followed by addition of hexafluorophosphate resulted in the isolation of the corresponding enantiomeric complexes [Cu(R-L 1 )Cl](PF6) (1), [Cu(S-L 1 )Cl](PF6) (2) and [Cu(S-L 1 )Cl](PF6)??0.5Et2O (3), in which dimerization occurs through two long Cu??????Cl interactions, the ??-chloro bridges being thus strongly asymmetric. The organic ligand is bound to the metal centre via its N3-donor dipyridylmethylamine fragment in a planar fashion, such that each copper centre is in a square planar environment (or distorted square pyramidal with a long axial bond length if the additional interaction is considered). When R,S-L 1 was employed in a parallel synthesis, the similar racemic complex [Cu(R,S-L 1 )Cl](PF6)??0.5MeOH (4) was obtained, in which the L 1 ligands in each dimeric unit have opposite hands. In contrast to the complexes of L 1 , the reaction of Cu(II) chloride with the related ligand, (R)-1-cyclohexyl-N,N-bis(pyridine-3-ylmethyl)ethanamine (R-L 2 ), yielded the mononuclear complex [Cu(R,S-L 2 )Cl2] (5), displaying a distorted square pyramidal coordination geometry. The structure of this product along with its corresponding circular dichroism spectrum revealed that racemisation of the starting R-L 2 ligand has occurred under the relatively mild (basic) conditions employed for the synthesis. A temperature-dependent magnetic studies of the complexes 1, 2 and 5 indicate that a week ferromagnetic interaction is operative in each dicopper core in 1 and 2 with 2J?=?1.2?cm?1. On the other hand, a week antiferromagnetic intermolecular interaction is operative for 5.  相似文献   

12.
As starting materials for theoretical and pharmacological studies 7,15-diazadispiro[5.1.5.3]hexadecane (1), its 14-imino-(2) and 14-oxo-derivative (3) were prepared. Reduction of bis-(1-cyanocyclohexyl)-amine (4) withLAH leads to a mixture of1 and2. For the exclusive preparation of1, 4 is treated with conc. H2SO4 to yield the corresponding 14,16-dioxohexadecane, which is reduced to1 withLAH. The preparation of3 is effected by acid hydrolysis of acetylated2.  相似文献   

13.
The reactions of 3(5)-(4-methoxyphenyl)-5(3)-phenyl-1H-pyrazole (L 1 ) with nitric acid and 5-(4-benzyloxyphenyl)-3-(furan-2-yl)-1H-pyrazole(L 2 ) with hydrochloric acid produced [HL 1 · NO3] (Salt-1) and [HL 2 · Cl] (Salt-2). The structures of Salt-1 and Salt-2 were determined by single crystal X-diffraction. In Salt-1, HL 1 showed [2 + 2] binding of NO3 ? ions in the solid state to form dimer architecture with R 1 2 (4) and R 4 4 (14) graph sets. An anion directed one-dimensional anion-assisted helical chain with active participation of the chloride ion and protonated pyrazole via N–H···Cl hydrogen bonding in Salt-2. In addition, the protonated HL 2 molecules interacted with each other through weak C–H···π interactions resulting in the formation of another one-dimensional helical chain.  相似文献   

14.
3-(Naphthalen-1-ylmethylene)-5-phenylfuran-2(3H)-one 1 was prepared and converted into a variety of heterocyclic systems of synthetic and biological importance. Benzylamine was reacted with furanone 1 to afford compounds 2 and 3 according to the reaction conditions. Butanamide 2 was reacted with thionyl chloride or thiourea to give derivatives 4 and 5, respectively. Compound 3 was reacted with ethyl cyanoacetate to give the corresponding pyrrolopyridine derivative 6. Treatment of 1 with hydrazine hydrate afforded compounds 7 and 8 according to the reaction conditions. Also, compound 1 was reacted with phenyl hydrazine, hydroxyl amine, malononitrile or thiourea to give compounds 912, respectively. Cyclization of 7 with ethoxymethylene-malononitrile, ethyl-(ethoxymethylene)cyanoacetate, carbon disulphide or acetylacetone afforded the corresponding compounds 1316, respectively. Condensation of 7 with p-nitrobenzaldehyde gave the corresponding hydrazone 17, which was treated with thioglycolic acid or chloroacetyl chloride to give compounds 18 and 19, respectively. Also, most of the prepared products were tested for anti-avian influenza virus and revealed promising antiviral activity against H5N1 virus [A/Chicken/Egypt/1/2006 (H5N1)] by determination of both TC 50 and ED 50 and confirmed by plaque reduction assay on MDCK cells. Compounds 7, 8, 11, 12 and 13 showed the highest effect compared with the other tested compounds.  相似文献   

15.
3-Amino-4-(tert-butyl-NNO-azoxy)furoxan (1a) and 4-amino-3-(tert-butyl-NNO-azoxy)-furoxan (1b) and their acetyl derivatives 6a,b were obtained. The equilibria 1a ai 1b and 6a ? 6b were studied. Furoxan 6b can undergo thermal rearrangement into 3-[(tert-butyl-NNO-azoxy)(nitro)methyl]-5-methyl-1,2,4-oxadiazole (7), prolonged heating of which gives N-(2-tert-butyl-5-nitro-1-oxido-2H-1,2,3-triazol-4-yl)acetamide (8). With the transformation 78 as an example, the possibility of participation of the azoxy group in the Boulton-Katritzky rearrangements was demonstrated for the first time.  相似文献   

16.
Oxidation of the α- and β-4-phenyl-1,2,4-triazolin-3,5-dione adducts of vitamin D3 (2 and1) withMCPBA yields two diastereomeric mixtures of the (5,10)-(7,8)-dioxiranes3 a,3 b,3 c and4 a,4 b respectively. The corresponding benzoates5 a,5 b,6 a and6 b were prepared and the X-ray crystal structure of5 b was determined. This analysis proved5 b to be the (5R, 1 OS)-(7R, 8R)-dioxirane of the β-resp. (6S)-4-phenyl-1,2,4-triazolin-3,5-dione adduct1 of vitamin D3.  相似文献   

17.
The AIE luminogen tetrakis(2-naphthalenyl)ethene (2-NA 4 E) was synthesized by Barton’s double extrusion diazo-thione coupling method from 2,2′-dinaphthyl thioketone and 2,2′-(diazomethylene)bisnaphthylene in 77 % yield. The structure of 2-NA 4 E was confirmed by its 1H NMR and 13C NMR spectra with full assignments. 2-NA 4 E and its parent tetraphenylethene (Ph 4 E) have been subjected to a comprehensive computational DFT study, in search of their conformational spaces. Seven conformers and two transition states of 2-NA 4 E have been located. Four conformers and one transition state of Ph 4 E have been located. The conformers of 2-NA 4 E and Ph 4 E are not overcrowded, as indicated by the contact distances in the fjord and cove regions. The relative free energies (ΔG 298) of the six most stable conformers of 2-NA 4 E are in the narrow range of 2.3 kJ/mol; they make comparable contributions (12–29 %) to the equilibrium mixture. The energy barriers for the diastereomerization D 2-Z,Z,Z,Z $ \rightleftharpoons $ ? D 2-E,E,E,E via the transition state C 1-Z,E,E,Z and for the enantiomerization C 2-Z,Z,E,E $ \rightleftharpoons $ ? C 2-E,E,Z,Z via the transition state C i -Z,E,Z,E are only 29.8 and 29.0 kJ/mol, respectively, indicating very rapid rates of diastereomerization and enantiomerization at room temperature. The values of naphthalenyl torsion angles and ethenic twist angles in 2-NA 4 E are almost identical to those in the parent Ph 4 E. The previously proposed “bulkiness” of the naphthalenyl substituents and the validity of the restriction of naphthalenyl rotation are challenged. The analysis of the AIE effect in 2-NA 4 E should take into account the intermolecular homochiral and heterochiral interactions between the conformers.  相似文献   

18.
Some new Schiff bases, (Z)-4-amino-3-((E)-(R-methoxybenzylidene)hydrazono)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L2), R?=?3 (L3) and R?=?4 (L4)), were synthesized by the condensation reactions of 4-amino-3-hydrazinyl-6-methyl-1,2,4-triazin-5(4H)-one (L1) and corresponding methoxybenzaldehyde in a molar ratio 1:1.5 in high yields. The reaction of L2 and L4 with an excess amount of the corresponding aldehydes gave the unsymmetrical bis-Schiff bases (E)-3-((E)-(R-methoxybenzylidene)hydrazono)-4-((E)-R-methoxybenzylideneamino)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L22) and R?=?4 (L44)), respectively. Furthermore, the reaction of L2?CL4 with silver(I) nitrate in a molar ratio 2:1 led to the silver(I)-complexes with the general formula [Ag(Lx)2]NO3 (Lx?=?L2 (2), L3 (3) and L4 (4)). All synthesized Schiff base compounds and complexes were characterized by a combination of IR-, 1H-NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the structures of L2, L4·CH3CN, L22·CH3OH and L44·CH3OH and complexes 2 and 4 were determined by X-ray diffraction studies.  相似文献   

19.
Bromination of 1-benzyl-4-methyl-3.4-dihydro-2(1H)-pyrimidinone (9 a) with 1 mole Br2 in CHCl3 yields 1-benzyl-5-bromo-6-hydroxy-4-methyltetrahydro-2(1H)-pyrimidinone,12 a, or the 6-ethoxypyrimidinone13 a, according to whether H2O orEtOH is used in working up. With 2 moles Br2,9 a analogously affords the 5.5-dibromopyrimidinnes14 a or15 a. Bromination of the 6-hydroxypyrimidinone10 a yields the same products,12 a and13 a, or14 a and15 a respectively, while the 4-phenyl-pyrimidinones9 b and11 b yield the corresponding 5-bromo-and 5.5-dibromopyrimidinones13 b and15 b. The structures of the compounds12 a-15 b are confirmed by their NMR data and chemical properties: the oxopyrimidinylmethylureas16 a and17 a are formed by the action of methylurea on12 a and13 a, or on14 a and15 a respectively; with hexamethylenetetramine,12 a reacts to give the 5.6-dihydroxypyrimidinone18 a, while13 b is transformed to the 4-phenylpyrimidinone19 b. 13 b was also synthesized from α-bromocinnamaldehyde. The mechanism of bromination is discussed.  相似文献   

20.
Tetrakis(2-methyl-5-methylthiothien-3-yl)ethene (1) exhibits incomplete photochromism in the powder state, KBr pellet, the amorphous state and a polystyrene film. In contrast, 1 in the single crystalline state does not show any photoreactivity. This chromic system involves three possible photon-modes involving the starting open isomer 1, the corresponding closed isomer trans- 2 and the rearranged isomer trans- 3. Unfortunately, efforts to control the interconversions between these isomers, especially the rearrangement of trans- 2 to trans- 3, have not been fruitful. A possible mechanism for photocyclization of 1 to form trans- 2 is also discussed on the basis of the results of density functional theory calculations together with that for the 1,2-dyotropic rearrangement of trans- 2 to give trans- 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号