首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six quaternary ammonium salts were designed and synthesised with moderate to high yields in three steps, based on cardanol, a low-cost and abundant renewable resource. The new ammonium salts can act as reactive surfactants due to their having both a hydrophilic ammonium group and a hydrophobic unsaturated alkyl chain. The gemini surfactants with a linker of a linear saturated aliphatic hydrocarbon chain exhibited a relatively low CMC value (≤ 0.2 mmol L?1) and surface tension (≤ 27 mN m?1), signifying that this kind of amphiphile exhibited good surface active properties. The photo-active gemini surfactant with critical micelle concentration (CMC) of 0.05 mmol L?1 was used successfully as the sole emulsifier in the emulsion polymerisation of methyl methacrylate (MMA). In addition, a benzyl bromide-containing surfactant can act as both an atom transfer radical polymerisation (ATRP) initiator and an emulsifier in an activator generated by the electron transfer atom transfer radical polymerisation (AGET ATRP) of MMA in emulsion. The value of the number-average molecular mass of the resulting cardanol-end poly(methyl methacrylate) (PMMA) is Mn,GPC = 45.1 kDa, with polydispersity of 1.39.  相似文献   

2.
A novel photoactive gemini surfactant was easily synthesised in high yields. The multi-functional molecule can be used as a gemini surfactant, a benzophenone type photoinitiator, and as an ATRP initiator. Poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)-block-poly(allyl methacrylate) (PMMA-b-PAMA) were prepared using the photoactive gemini surfactant as an ATRP initiator under soap-free miniemulsion polymerisation conditions. Kinetic results of the miniemulsion polymerisation of methyl methacrylate (MMA) indicate that the reaction has controlled/living characteristics. UV curing was performed by irradiation of the linear PMMA-b-PAMA polymer, in which PMMA-b-PAMA containing a benzophenone moiety functioned as a macromolecular photoinitiator.  相似文献   

3.
Grafting of methyl methacrylate (MMA) and ethyl acrylate (EA) monomers from immobilized N-chlorosulfonamide (NCSA) groups on crosslinked polystyrene-based beads have been achieved by copper mediated atom transfer radical polymerisation (ATRP) methodology. The initiation takes place via NCSA groups on the polymer, created by chlorination of crosslinked polystyrene sulfonamides. Using CuBr and hexacishexyl triethylenetetramine ligand for MMA and EA grafting showed a first order kinetics for each monomers.Polymers with 3.18 mmol g−1 of NCSA groups have a progressive mass increase in accordance with increasing MMA graft polymerisation up to 380.0% grafting obtained after 6 h.By the method presented, grafting of MMA and EA have been successfully achieved with negligible amounts of free polymer formation (6.2%) in the solution. Hence grafting by ATRP through polymer supported NCSA is superior to the common radical grafting methods which are yielding free polymers simultaneously.The method provides an efficient procedure in preparing core-shell type of polymers, with retention of the bead shapes.  相似文献   

4.
A series of oligomeric cationic surfactants were prepared directly in aqueous media by atom transfer radical polymerization (ATRP) of methacrylate surfmers. The molecular weight of oligomeric surfactants was characterized by 1H NMR, and the results were close to those obtained via GPC analysis. The resulting oligomers have narrow molecular weight distributions, with polydispersity indices in the range of 1.18–1.32, and the research indicated that the synthesis of the oligomeric surfactants was consistent with characteristics of controlled free radical polymerization. The surface activities of oligomeric surfactant solutions were examined, and it was found that their surface activities were enhanced when increasing oligomerization degree or hydrophobic chain length, in agreement with what observed for oligomeric surfactants prepared by classic organic synthesis. Spherical vesicles formed by these oligomers prepared via ATRP were observed by Cryo-TEM. It was proved that ATRP possesses the advantages over classic organic synthesis, as it provided a simple and easy route for synthesizing oligomeric surfactants with well-controlled architecture.  相似文献   

5.
The catalytic activity of ruthenium-p-cymene complexes bearing N-heterocyclic carbene ligands in atom transfer radical addition (ATRA) or polymerisation (ATRP) strongly depends on the substituents of the carbene ligand, thereby providing a nice illustration of the importance of organometallic engineering and ligand fine tuning in homogeneous catalysis.  相似文献   

6.
A method to prepare magnetic nanoparticles with a covalently bonded polystyrene shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles through our novel method, which was the combination of ligand exchange reaction and condensation of triethoxysilane having an ATRP initiating site, 2-bromo-2-methyl-N-(3-(triethoxysilyl)propyl) propanamide. Then the surface initiated ATRP of styrene mediated by a copper complex was carried out and exhibited the characteristics of a controlled/“living” polymerization. The as-synthesized nanoparticles were coated with well-defined PS of a target molecular weight up to 45 K. These hybrid nanoparticles had an exceptionally good dispersibility in organic solvents and were subjected to detailed characterization using DLS, GPC, FTIR, XPS, UV-vis, TEM and TGA.  相似文献   

7.
A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators is reported. Poly(methylmethacrylate) (PMMA), poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(ethylene glycol) (PEG) ATRP initiators were converted into their corresponding RAFT analogues using modified ATRP conditions for polymer chain activation in presence of bis(thiobenzoyl) disulphide.  相似文献   

8.
This study investigates atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) using activators generated by electron transfer (AGET) as the initiation technique in an emulsion well‐mixed 2L stirred tank reactor. The performance of the AGET ATRP of MMA is analyzed for five key independent variables, namely temperature, catalyst complex (CuBr2/dNbpy), initiator (EBiB), reducing agent (ascorbic acid), and surfactant (Brij 98). The reaction is carried out based on a two‐step polymerization procedure. A resolution 5 fractional factorial design technique is employed to assess the influence of the five independent variables on the monomer conversion, polymer average molecular weights, and polydispersity index (PDI). An input–output model is constructed from the data of 21 designed experimental tests. A statistical analysis of the results shows that the temperature is the most influential variable for the three output process responses. The initiator strongly affects the poly(methyl methacrylate) (PMMA) molecular weights. It is the least important key variable affecting MMA conversion and PDI, and the surfactant is the least one affecting PMMA Mn. On assessing the independent interactions effect, the interactions of temperature‐surfactant on conversion, and temperature‐initiator for PMMA Mn are considered. Process simulation in 3D mapping has demonstrated that model predictions agree well with experimental data.  相似文献   

9.
Poly(methyl methacrylate) grafted imogolite clay nanotubes were fabricated via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) by designing a water-soluble amphiphilic ATRP initiator that can adsorb onto imogolite surface in an aqueous solution.  相似文献   

10.
Poly(methyl methacrylate) (PMMA) was synthesized via atom transfer radical polymerization (ATRP). As a catalyst copper(I)thiocyanate (CuSCN) was used with N-n-pentyl-2-pyridylmethanimine as a ligand. Infrared spectroscopy and matrix assisted laser desorption ionization time-of-flight mass spectrometry were used to characterize the synthesized polymers. From this it was clear that at least to some extent thiocyanate was present as end groups of the PMMA chains. This observation is discussed in view of a phenomenon called halogen exchange, which has been reported before for bromine/chlorine exchange in ATRP.  相似文献   

11.
A poly(2-(2-bromopropionyloxy)ethyl methacrylate) (PBPEM) was used as macroinitiator in the synthesis of molecular brushes with poly(4-vinylpyridine) side chains, (P(BPEM-g-4VP). Atom transfer radical polymerization (ATRP) was employed as the polymerization technique. The polymerizations were carried out in DMF at 30 °C using a copper-chloride-based ATRP catalyst, which converted all the dormant polymer chain ends to alkyl chloride groups, thus minimizing branching and crosslinking, which occurred when a copper bromide-based catalyst was employed. Tris(2-pyridylmethyl)amine was selected as the ligand due to the high activity of its CuI complex in ATRP as well as its strong binding to both CuI and CuII, which prevented competitive complexation of the monomer or polymer to the metal center. In order to prevent crosslinking via radical coupling, the monomer conversion was kept low (under 3%) and the alkyl chloride end groups of P4VP side chains were converted to alkoxyamines upon activation followed by a reaction with TEMPO radical. Dynamic light scattering measurements showed the hydrodynamic diameter (DH) of the brushes was pH-dependent. Aggregation of single P(BPEM-g-4VP) brushes in water was very pronounced at high pH values but was observed even when the amount of added HCl was enough to completely protonate the pyridine units (DH = 278 nm).  相似文献   

12.
原子转移自由基聚合在智能型水凝胶制备中的应用   总被引:2,自引:0,他引:2  
分别对原子转移自由基聚合和智能型水凝胶两者进行了综述,分析总结了利用原子转移自由基聚合制备智能型水凝胶方面的应用情况,并对其前景作了一定的展望.  相似文献   

13.
原子转移自由基细乳液聚合*   总被引:2,自引:0,他引:2  
本文从正向、反向、同时正向/反向、电子转移活化剂等不同原子转移自由基聚合(ATRP)细乳液引发体系的角度,综述了近年来国内外关于ATRP细乳液聚合的研究进展。在细乳液体系中进行正向ATRP,聚合可控性不理想,反向ATRP相对适合于细乳液体系,其缺点是表面活性剂用量较大。同时正向/反向引发体系的ATRP中催化剂用量大为减少,并且聚合具有良好的可控性;电子转移活化剂(AGET)ATRP是通过电子转移反应来还原过渡金属的氧化态,克服了同时正向/反向ATRP中需要引入自由基引发剂的缺点。  相似文献   

14.
Low molecular weight linear poly(methyl acrylate), star and hyperbranched polymers were synthesized using atom transfer radical polymerization (ATRP) and end‐functionalized using radical addition reactions. By adding allyltri‐n‐butylstannane at the end of the polymerization of poly(methyl acrylate), the polymer was terminated by allyl groups. When at high conversions of the acrylate monomer, allyl alcohol or 1,2‐epoxy‐5‐hexene, monomers which are not polymerizable by ATRP, were added, alcohol and epoxy functionalities respectively were incorporated at the polymer chain end. Functionalization by radical addition reactions was demonstrated to be applicable to multi‐functional polymers such as hyperbranched and star polymers.  相似文献   

15.
Atom transfer radical polymerization (ATRP) was initially developed in the mid‐1990s, and with continued refinement and use has led to significant discoveries in new materials. However, metal contamination of the polymer product is an issue that has proven detrimental to widespread industrial application of ATRP. The laboratories of K. Matyjaszewski have made significant progress towards removing this impediment, leading the development of “activators regenerated by electron transfer” ATRP (ARGET ATRP) and electrochemically mediated ATRP (eATRP) technologies. These variants of ATRP allow polymers to be produced with great molecular weight and functionality control but at significantly reduced catalyst concentrations, typically at parts per million levels. This Concept examines these polymerizations in terms of their mechanism and outcomes, and is aimed at giving the reader an overview of recent developments in the field of ATRP.  相似文献   

16.
Temperature responsive copolymers of dextran grafted with poly(N-isopropylacrylamide) (Dex-g-PNIPAAM) were prepared by atom transfer radical polymerization (ATRP) in homogeneous mild conditions without using protecting group chemistry. Dextran macroinitiator was synthesized by reaction of dextran with 2-chloropropionyl chloride at room temperature in DMF containing 2% LiCl. ATRP was carried out in DMF:water 50:50 (v/v) mixtures at room temperature with CuBr/Tris(2-dimethylaminoethyl)amine (Me6TREN) as catalyst. Several grafted copolymers with well defined number and length of low polydispersity grafted chains were prepared. Temperature induced association properties in aqueous solution were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy and atomic force microscopy (AFM). LCST, ranging from 35 to 41 °C, was significantly affected by number and length of grafted chains. The fine tuning of LCST around body temperature is an important characteristic not obtainable by conventional radical grafting of PNIPAAM. Well defined spherical nanoparticles were formed above the LCST of PNIPAAM. Hydrodynamic diameter was in the range 73-98 nm.  相似文献   

17.
This study presents styrene emulsion polymerization initiated in aqueous media through an atom transfer radical polymerization (ATRP) mechanism. The water-soluble initiator employed in this process has been synthesized by our team by reacting diethanolamine with α-bromoisobutyryl bromide. The complexation of CuBr was realized by using a bicomponent complexation system comprised of 2,2′-bipyridine and N,N,N′,N′,N″-pentamethyldiethylenetriamine. The initiator ratio influence on the obtained emulsion was studied. The obtained latexes and polymer particles have been characterized by dynamic light scattering, scanning electron microscopy, and gel permeation chromatography.  相似文献   

18.
We report the preparation of low-fluorinated homopolymer via heterogeneous atom transfer radical polymerization (ATRP) of 2,2,2-trifluoroethyl methacrylate (TFEMA) using 2,2′-bipyridine (bpy), N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA), and tris(2-(dimethylamino)ethyl)amine (Me6TREN) as representatives for di-, tri-, and tetradentate amine ligands, respectively. The ATRP was better controlled, yielding polymers with controlled molecular weights and low polydispersities (Mw/Mn ca. 1.11) when bpy was used as a ligand than when PMDETA was used. This was further supported by the results of our kinetic and chain extension studies. However, the ATRP of TFEMA had lower monomer conversions and gel formation when Me6TREN was used as the ligand. Further reported are the thermal-properties, as well as the surface properties of the films from the resulting polymers with different molecular weights.  相似文献   

19.
A novel activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) initiation system composing of an initiator sodium chloroacetate, a catalyst ferric chloride, and a reducing agent ascorbic acid was developed to improve the gelation time of the in situ crosslinked polymer system. The kinetics of polymerization of acrylamide showed features of a living/controlled process in which the concentrations of the growing radicals [P·] are kept constant throughout the polymerization process. Compared with conventional potassium persulfate initiators, the gelation time of the in situ crosslinked polymer system can be improved to 40 h or even longer using the ARGET ATRP initiation system at 80 °C due to the low radical concentration and slow polymerization reaction. Core flooding test showed that the ARGET ATRP initiating system developed could initiate the polymerization reaction of the in situ crosslinked polymer system in the core. However, the gelation time was extended in comparison to that of the result obtained in the bottle, resulting from the dilution and adsorption of ARGET ATRP components during the injection process. The research expands the application field of the ARGET ATRP principle and has a promising prospect on controlling the gelation time of the in situ crosslinked polymer system. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 519–527  相似文献   

20.
Summary: The controlled polymerisation of a bulky, peptide‐based monomer was investigated. The cyclic β‐sheet forming decapeptide gramicidin S was modified with a methacrylate handle and subsequently polymerised via atom transfer radical polymerisation (ATRP), to yield a well‐defined gramicidin‐S‐containing polymer. The secondary structure of the peptide moiety was retained within the resulting polymer, as indicated by IR spectroscopy. This is the first example of the use of ATRP to create a synthetic polymer with a cyclic peptide as a side chain.

The gramicidin S based monomers synthesised here were then polymerised by ATRP.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号