首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using a 4-echo spin-echo sequence, cerebral T2 was measured in specific anatomic regions in eleven healthy newborn infants, whose gestational plus postnatal ages (GPAs) lay between 37 and 42 weeks. For a region in the pons, T2 was 141+/-9 ms (mean +/- standard deviation), and no significant dependence upon GPA was seen. In the thalamus mean T2 was 136+/-13 ms, and T2 demonstrated a significant negative linear dependence upon age (r = 0.690; p < 0.02). In periventricular and frontal regions, mean T2 were 217+/-33, and 228+/-32 ms respectively, and more marked negative linear correlations with age were observed (r = 0.833; p < 0.001 and r = 0.722; p < 0.02). For these regions, the rate of T2 decrease with age appeared to be related to known patterns of myelination. For the parietal region studied, mean T2 was 204+/-34 ms, no significant dependence upon GPA being seen. T2 shows promise as an objective measure of cerebral development in the perinatal period.  相似文献   

2.
Half-Fourier imaging is useful for reducing imaging time by requiring less than the usual number of phase-encoding steps. This increase in speed can be traded off for longer repeat times, TR, for improved contrast-to-noise in the same imaging time or to collect short asymmetric echoes. Consequently, it is shown to be especially useful for long TR spin-echo imaging where at 1.5 T a repeat time of 4 sec is recommended for a double-echo TE = 30/90 sequence or 3 sec for a double-echo TE = 15/90 sequence. Short TR FLASH imaging also benefits from a longer TR since there is more time to spoil the signal. In both cases, there is the advantage when a multislice acquisition mode is used that more slices (and hence, a larger volume) can be taken. Another application is to apply half-Fourier imaging in the read direction to avoid spin dephasing and motion artifacts. This is particularly useful in angiographic imaging where smaller pixel sizes and shorter echo times both reduce pixel dephasing. Again, even though taking less than the usual number of data points leads to a reduction in S/N, the improved signal and resolution for blood vessels can more than compensate this loss.  相似文献   

3.
Methods for making rapid and accurate measurements and maps of the transverse relaxation time from a single free induction decay (FID) are proposed. The methods use a multi-echo sequence in combination with B1 insensitive (hyperbolic secant or BIREF2b) refocusing pulses and rapid echo-planar imaging techniques. The results were calibrated against a single spin echo echo-planar imaging sequence using a phantom containing a range of CuSO4 concentrations. The mean percentage absolute difference between the multi-echo and single-echo results was 3% for the multi-echo sequence using the hyperbolic secant refocusing pulse, and 7% for the multi-echo sequence using the BIREF2b refocusing pulse, compared to 13% for a multi-echo sequence using a nonselective sinc refocusing pulse. The use of the sequences in vivo has been demonstrated in studies of gastric function, i.e., the measurement of gastric dilution and monitoring of formation of a raft of alginate polysaccharide within the stomach.  相似文献   

4.
Measurements of proton T1 and T2 were performed on GdCl3 solutions (20 less than T2 less than 500 msec, 90 less than T1 less than 1000 msec) on large-bore NMR imaging systems operating at 1.0T and 1.5T. CPMG multi-echo (ME), multiple saturation recovery (MSR) and modified fast inversion recovery (MFIR) pulse sequences as well as a sequence that combines and interleaves T1 and T2 weighted data acquisition (which we call "multiple saturation-recovery multiple-echo" (MSRME) were used. The relaxation data are compared to those obtained on a small bore NMR spectrometer operated at 1.5T. T1 and T2 values for the solutions were found to be the same within 10% for the two fields. Reproducibility of measurements of T1, T2 and the unnormalized spin density of the solutions was better than 5%. Systematic errors, amenable to correction through calibration, are noted in the imager T1 and T2 values. T1 and T2 values for some typical neural tissues at 1.5T and body tissue at 1.0T for human volunteers were obtained and are tabulated.  相似文献   

5.
《Magnetic resonance imaging》1996,14(9):1093-1098
The purpose of this study was to assess ferromagnetism, heating, and artifacts for cervical fixation devices exposed to a 1.5 T MR system. Cervical fixation devices (three halos, one tong and two halo vests) were evaluated for compatibility with MR procedures. Ferromagnetism was determined using a previously described technique. Heating was evaluated by measuring temperatures at various positions on the cervical fixation devices while applied to a volunteer subject before and during the use of various pulse sequences, including an magnetization transfer contrast (MTC) sequence. Artifacts associated with routine clinical MR imaging of the cervical spine were qualitatively evaluated with the cervical fixation devices applied to a volunteer subject. None of the devices displayed attraction to the magnetic field. The temperature changes were ±1.5°C in each instance. The MTC pulse sequence produced a sensation of “heating” the skull pins that may have been caused by vibration of the cervical fixation device. The MR images of the cervical spine were obtained without apparent artifacts using each routine, clinical pulse sequence. The lack of ferromagnetism, negligible heating, and capability of obtaining diagnostically acceptable studies of the cervical spine indicate that MR imaging performed at 1.5 T or less may be conducted safely in patients with each of the cervical fixation devices tested using conventional pulse sequences.  相似文献   

6.
The objective of this study was to implement a clinically relevant multi-slice multi-echo imaging sequence in order to quantify multi-component T2 relaxation times for normal volunteers at both 1.5 and 3 T. Multi-echo data were fitted using a nonnegative least square algorithm. Twelve echo data with nonlinear echo sampling were acquired using a receive-only eight-channel phased array coil and volume head coil for phantoms and normal volunteers, and compared to 32-echo data with linear echo sampling. It was observed that the performance of the 180 degrees refocusing trains was more spatially uniform for the receive-only eight-channel phased array coil than for the head coil, particularly at 3 T. The phantom study showed that the estimated T2 relaxation times were accurate and reproducible for both single- and multi-slice acquisition from a commercial phantom with known T2 relaxation times. Short T2 components (T2 <50 ms) were mainly observed within the white matter for normal volunteers, and the fraction of short T2 water components (i.e., myelin water) was 7-12% of total water. It was observed that the calculated myelin water fraction map from the nonlinearly sampled 12-echo data was comparable with that from the linearly sampled 32-echo data. Quantification of T2 relaxation times from multi-slice images was accomplished with a clinically acceptable scan times (16 min) for normal volunteers by using a nonselective T2 prep imaging sequence. The use of the eight-channel head coil involved more accurate quantification of T2 relaxation times particularly when the number of echoes was limited.  相似文献   

7.
王盼盼  姚旭日  刘雪峰  俞文凯  邱棚  翟光杰 《物理学报》2017,66(1):14201-014201
运动目标成像在实际应用中具有重要作用,而如何获取高质量运动目标图像是该领域研究中的一个热点问题.本文采用行扫描采样的方式,通过构造运动测量矩阵,建立一种基于压缩感知理论的运动物体成像模型,并通过仿真及实验,验证了该模型对于恢复运动物体图像信息的可行性.实验结果证明,该方法可获得高质量的运动物体成像.通过引入图像质量评价标准,分析了运动物体成像质量与速度之间的关系.将该方法与普通压缩感知算法进行比较,结果证明,在相同速度下,该方法的成像质量更高.该方法在无人机对地观测、产品线视频监测等领域有着很好的应用前景.  相似文献   

8.
9.
Fluorine-19 magnetic resonance imaging is limited by the fact that acquisition times are long and that high concentrations must be used in order to obtain good signal to noise. A significant improvement in signal to noise ratio may be brought about by the addition of Gd-DTPA, a paramagnetic agent which shortens T1. Images of phantoms containing trifluoroacetic acid (TFA) doped with Gd-DTPA were obtained using a standard spin echo sequence in a 1.5 T field. Interpulse times (TR and TE) and Gd-DTPA concentrations were optimized to yield maximum signal to noise ratios. The use of fast-field-echo scans to image fluorine is also demonstrated. Signal averaging successive FFE scans yields good signal to noise and resolution and may find clinical applicability in imaging areas subject to motion.  相似文献   

10.
《Magnetic resonance imaging》1998,16(9):1049-1055
Spin-lattice (T1) relaxation times were measured by an inversion-recovery magnetic resonance imaging method with a slice-selective inversion pulse (SIP), a non-selective rectangular inversion pulse (RIP), or a B1-insensitive adiabatic inversion pulse (AIP). Data analysis either assumed perfect inversion (two-parameter fit) or allowed for imperfect inversion (three-parameter fit). Imperfect inversion pulses caused low T1 values in phantoms with a two-parameter fit, while three-parameter T1 estimates were accurate over the range 430–2670 ms. A difference of ∼10% between two-parameter and three-parameter T1 values in normal human brain tissue was attributed to B1 inhomogeneity with the slice-selective inversion pulse and rectangular inversion pulse, to the slice profile with the slice-selective inversion pulse, and to T2 effects for the adiabatic inversion pulse. Any T1 method that relies on accurate flip angles may have a significant systematic error in vivo. Phantom accuracy does not ensure accuracy in vivo, because phantoms may have a more homogeneous B1 field and a longer T2 than do biological samples.  相似文献   

11.
Functional magnetic resonance imaging (fMRI) was performed on a conventional 1.5 T scanner by means of a modified FLASH-technique at temporal resolutions of 80 and 320 ms. The method's stability was assessed by phantom measurements and by investigation of three volunteers resulting in a low amplitude (3%) periodic (4 s) signal modulation for the in vivo measurements, which was not observable in the phantom experiments. fMRI activation studies of motor and visual cortices of four adjacent slices were carried out on 12 healthy right-handed volunteers. Stimulation was performed by a triggered single white light flash or single finger-to-thumb opposition movement, respectively. Event-related response of visual and motor activation was traced over 10.24 s with a temporal resolution of 320 ms for the four slice measurements. Brain activation maps were calculated by correlation of measured signal time courses with a time-shifted boxcar function. Activation was quantified by calculation of percentual signal change in relation to the baseline. Observed signal magnitudes were about 5–7% in visual and about 8–12% in primary motor cortex. While photic response was delayed by about 2 s, motor stimulation showed an instantaneous increase of the MR signal. MR signal responses for both stimuli had decayed completely after about 5 s. Our results show that event-related fMRI enables mapping of brain function at sufficient spatial resolution with a temporal resolution of up to 80 ms on a conventional scanner.  相似文献   

12.
The purpose of this study was to optimize an inversion-recovery (IR) turbo fast low-angle shot (FLASH) for multislice imaging by evaluating the accuracy of calculated the relaxation-rate (R1) for different inversion times (TI). This is important for tracer kinetic modeling because it requires a system responding linearly to input. R1 are linearly related to changes in the concentration of gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA), and R1 is a parameter that can be derived from the magnetic resonance (MR) signal. The accuracy of calculated R1 using an IR turbo fast low-angle shot was evaluated in phantoms and for increasing TIs using spectroscopically measured R1 values as reference. Signal curves, obtained in vivo after a bolus injection of Gd-DTPA, were used in an analytical computer program to study the effect of different TI-values on accurate calculation of R1. Results show that TIeff should be <200 ms to measure the bolus-passage of Gd-DTPA in blood accurately, whereas the myocardial response can be measured correctly for TIeff < 870 ms at 1.5 T. The initial slope of the myocardial signal enhancement curve becomes steeper for larger TI values, whereas the calculated R1 curves were similar, indicating that these curves, rather than signal curves, are more suitable even for qualitative perfusion evaluation. It is concluded that the results can be incorporated in a multislice IR turbo fast low-angle shot using the first slice (with a short TI) for assessment of both the arterial input function and the tissue response and the second slice in another position for assessment of the tissue response alone.  相似文献   

13.
Functional MRI (fMRI) studies designed for simultaneously measuring Blood Oxygenation Level Dependent (BOLD) and Cerebral Blood Flow (CBF) signal often employ the standard Flow Alternating Inversion Recovery (FAIR) technique. However, some sensitivity is lost in the BOLD data due to inherent T1 relaxation. We sought to minimize the preceding problem by employing a modified UN-inverted FAIR (UNFAIR) technique, which (in theory) should provide identical CBF signal as FAIR with minimal degradation of the BOLD signal. UNFAIR BOLD maps acquired from human subjects (n = 8) showed significantly higher mean z-score of approximately 17% (p < 0.001), and number of activated voxels at 1.5T. On the other hand, the corresponding FAIR perfusion maps were superior to the UNFAIR perfusion maps as reflected in a higher mean z-score of approximately 8% (p = 0.013), and number of activated voxels. The reduction in UNFAIR sensitivity for perfusion is attributed to increased motion sensitivity related to its higher background signal, and, T2 related losses from the use of an extra inversion pulse. Data acquired at 3.0T demonstrating similar trends are also presented.  相似文献   

14.
为了测量纳秒级前沿的电磁脉冲电场,研制了一种基于现场可编程门阵列(FPGA)的宽频带电磁脉冲电场测量系统,该系统采用单极子天线作为电场探头的接收天线,高速AD采集调理电路输出的电压信号,由FPGA接收AD采样的数据并保存至DDR2和FLASH存储器中;分析了系统的整体方案;对系统的信号调理、采集的触发方式、FPGA控制以及干扰屏蔽等关键技术进行了重点分析;通过电场探头、电磁脉冲模拟器、PTEM暗室、衰减器以及示波器进行了性能和功能验证实验;利用软件将电场探头和示波器测得的信号进行处理和对比;实验表明,所研制的电场探头可以测量前沿大于2.5 ns、电场强度为0~50 kV/m的脉冲电场,系统线性度好,体积小,抗干扰性能好,测量准确性高。  相似文献   

15.
彭博  曲兴华  张福民  张天宇  张铁犁  刘晓旭  谢阳 《物理学报》2018,67(21):210601-210601
光学频率梳是一种重复频率与偏置频率锁定的新型光源,在频域上为频率间隔稳定的频率梳齿,在时域上为相对距离稳定的飞秒脉冲激光.光学频率梳在测距中的应用广泛,能够实现远距离高精度的测量.本实验使用飞秒激光脉冲作为光源,基于谐振腔扫描光学采样测距原理得到非对称的互相关干涉条纹,实现了远距离高精度的绝对测距.非对称互相关条纹可通过色散补偿与调节光学频率梳的重复频率得到,并通过得到的非对称的互相关干涉条纹对测距结果进行补偿.实验结果表明测距系统能够实现在50 m范围内误差为2 μm的绝对测距,测量相对误差为1.9×10-7.  相似文献   

16.
The implications of changing the echo time of a gradient-echo echo planar imaging sequence applied to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for perfusion imaging at 3T were investigated. Four echo times in the range of 21 to 45 ms were examined in a total of 17 patients who received a dose of 0.1 mmol/kg bodyweight Gadobutrol (Gadovist, 1.0 mmol/ml). As the primary optimization parameter, the concentration-to-noise ratio (SNRc) was selected as it takes effects of variations in baseline as well as in signal drop into account. In an analysis of gray matter, white matter and arterial regions of interest, SNRc showed the highest values for the shortest applied echo time in all cases. Maps of regional cerebral blood volume (rCBV) and blood flow (rCBF) were calculated using deconvolution based on singular value decomposition. The quality of rCBF and rCBV images was judged to be good or excellent in all cases, independent of the echo time. Calculated gray matter/white matter ratios of rCBF and rCBV displayed no significant dependence on the applied echo time. Considering the better SNRc and arterial signal saturation aspects, we found that the shortest investigated echo time was the superior one. We thus suggest that short echo times should be applied, taking technical limitations and clinical demands into consideration.  相似文献   

17.
王传伟  李洪涛 《强激光与粒子束》2020,32(6):065001-1-065001-7
脉冲形成网络常用于大功率固态调制器、微波驱动源以及激光激励源中,以便获取宽平顶的高压长脉冲输出。针对常用的雷利网络,根据宽平顶低纹波的应用需求,开展了优化设计技术研究,提出了基于单纯形优化法的设计算法。主要针对两种情形进行了优化设计及计算:一是电容值相等,通过优化电感值以获取最优的输出波形;二是约定电容值(电容值不完全相等),通过优化计算不同电容排列下的输出结果,寻求最优的电容排列组合及相应的优化电感值。上述优化算法结果表明,在两种情形下均可以获得较优的准方波脉冲输出,可以为准方波脉冲形成网络的工程实现提供一种新的方法。理论计算和电路仿真结果表明,所提出的方法合理可行。  相似文献   

18.
The effect of nitrogen-15 proton-driven spin diffusion on quantitative (15)N T(1) measurements in solid proteins is investigated, and the impact on the measurement of dynamic parameters is assessed. A simple model of exchange between neighboring nitrogens is used to reproduce the evolution of (15)N spin systems whose longitudinal relaxation rates and exchange rates are compatible with experimental measurements. We show that the induced error in the measured T(1) and its effect on the determination of dynamics parameters is likely to be less than the current experimental error. The use of deuterated protein samples is shown to have a small but sometimes visible effect, and may also considerably slow down or even suppress the exchange of magnetization due to spin diffusion.  相似文献   

19.
实验上采用比对方法测试了激光不经过固体与经过固体介质产生等离子体削波的脉冲波形信号,获得等离子体削波效应产生的脉冲削波倍数。实验结果表明,在波长1.064 m,脉宽1 ns,聚焦透镜焦距100 mm,薄石英片厚度100 m,约束等离子体的小孔直径80 m情况下,等离子体效应产生的脉冲削波倍数为12~14;分别改变石英片厚度和约束等离子体小孔直径,等离子体脉冲削波倍数不变;增加入射激光能量,脉冲削波倍数增加,且经过等离子体后的激光脉冲波形的后沿逐渐出现很陡的下降沿。在产生脉冲削波的截断点位置进行图形拼接重构得到激光脉冲波形信息。  相似文献   

20.
实验上采用比对方法测试了激光不经过固体与经过固体介质产生等离子体削波的脉冲波形信号,获得等离子体削波效应产生的脉冲削波倍数。实验结果表明,在波长1.064 m,脉宽1 ns,聚焦透镜焦距100 mm,薄石英片厚度100 m,约束等离子体的小孔直径80 m情况下,等离子体效应产生的脉冲削波倍数为12~14;分别改变石英片厚度和约束等离子体小孔直径,等离子体脉冲削波倍数不变;增加入射激光能量,脉冲削波倍数增加,且经过等离子体后的激光脉冲波形的后沿逐渐出现很陡的下降沿。在产生脉冲削波的截断点位置进行图形拼接重构得到激光脉冲波形信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号