首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Osmotic coefficients and water activities for the Li2B4O7+LiCl+H2O system have been measured at T=273.15 K by the isopiestic method, using an improved apparatus. Two types of osmotic coefficients, φ S and φ E, were determined. φ S is based on the stoichiometric molalities of the solute Li2B4O7(aq), and φ E is based on equilibrium molalities from consideration of the equilibrium speciation into H3BO3,B(OH)4 and B3O3(OH)4. The stoichiometric equilibrium constants K m for the aqueous speciation reactions were estimated. Two types of representations of the osmotic coefficients for the Li2B4O7+LiCl+H2O system are presented with ion-interaction models based on Pitzer’s equations with minor modifications: model (I) represents the φ S data with six parameters based on considering the ion-interactions between three ionic species of Li+, Cl, and B4O72−, and model (II) for represents the φ E data based on considering the equilibrium speciation. The parameters of models (I) and (II) are presented. The standard deviations for the two models are 0.0152 and 0.0298, respectively. Model (I) was more satisfactory than model (II) for representing the isopiestic data.  相似文献   

2.
One of the methods for the synthesis of peroxy-radical condensates is the condensation at liquid nitrogen temperature of an H2+O2 mixture dissociated in an electrical discharge at low pressure. Peroxy-radical condensates are thought to contain substantial quantities of higher hydrogen peroxides H2O3 and H2O4. The present work investigates the influence of experimental parameters on the synthesis of peroxy-radical condensates from an H2+O2 mixture, analyses the relevant literature, and recommends the optimal experimental conditions for the synthesis. The synthesis is carried out in a U-tube electrical discharge reactor (inner diameter ∼15 mm), immersed in liquid nitrogen, at rather low pressure (0.5–1 Torr). The maximum conversion of initial O2 into higher hydrogen peroxides was observed at a composition of initial gas mixture of 66.7% H2 + 33.3% O2.  相似文献   

3.
Water-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.   相似文献   

4.
Highly (111) oriented, phase-pure perovskite Pb(Zr0.3Ti0.7)O3 (or PZT 30/70) thin films were deposited on single-crystal, (0001) wurtzite GaN/sapphire substrates using the sol-gel process and rapid thermal annealing. The phase, crystallinity, and stoichiometry of annealed PZT films were evaluated by X-ray diffraction and Rutherford backscattering spectroscopy. The atomic force microscopy revealed a smooth PZT surface (rms roughness ∼1.5 nm) with striations and undulations possibly influenced by the nature of the underlying GaN surface. The cross-sectional field-emission scanning electron microscopic images indicated a sharper PZT/GaN interface compared to that of sol-gel derived PZT on (111) Pt/TiO2/SiO2/(100) Si substrates. The capacitance-voltage (C-V) characteristics for PZT in the Pt/PZT/GaN (metal-ferroelectric-semiconductor or MFS) configuration were evaluated as a function of annealing temperature and applied voltage. The observed C-V hysteresis stemmed from trapped charge at defect sites within PZT. Also, the lower capacitance density (C/A = 0.35 μF/cm2, where A is the area of an electrode) and remnant polarization (P r ∼ 4 μC/cm2) for PZT in the MFS configuration, compared to the values for PZT in the MFM configuration (Pt/PZT/Pt), were attributed to the high depolarization field within PZT.  相似文献   

5.
The heteropolytungstate (NH4)20[Na2(H2O)2Ni(H2O)5{Ni(H2O)}2As4W40O140] · 61H2O is obtained by the reaction of Na27[NaAs4W40O140] · 60H2O with NiCl2 · 6H2O and NH4Cl in pH≈4.0. The structure and chemical composition are determined by X-ray diffraction analysis and element analysis. The crystal data and main structure refinement are: a = 1.33135(18) nm, b = 1.9722(3) nm, c = 3.6430(5) nm, α = 78.010(2)°, β = 82.145(2)δ, γ = 74.385(2)°, V = 8.978(2) nm3, triclinic crystal system, space group: P1, Z = 2, R1 = 0.0512, and wR2 = 0.0684(I >2σ). The four S2 sites of the big cyclic ligand [As4W40O140]28- are occupied by two Na+ and two Ni2+ respectively, and each site supplies four Od coordinating to metal ion. The coordination number of Ni2+ is six, and that of two Na+ is five and six respectively. The third Ni2+ locates outside the cyclic [As4W40O140]28- and connects with one Od, and its coordination number is six.  相似文献   

6.
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4→TiC2H2 + (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm−1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1-2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two distinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2 +(2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H44IC→IM1-4B24,2ISC→IM1-2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2 +(2A2)+H2. Supported by ‘Qinglan’ Talent Engineering Funds by Tianshui Normal University.  相似文献   

7.
Studies on photo-catalytic reduction of CO2 using TiO2 photo-catalyst (0.1%, w/v) as a suspension in water was carried out at 350 nm light. CO2 from both commercially available source, as well as generated in situ through 2-propanol oxidation, was used for this study. The photolytic products such as hydrogen (H2), carbon monoxide (CO) andmethane (CH4) generated were monitored in TiO2 suspended aqueous solution with and without a hole scavenger, viz., 2-propanol. Similar photolytic experiments were also carried out with varying ambient such as air, O2, N2 and N2O. The yields of CO and CH4 in all these systems under the present experimental conditions were found to be increasing with light exposure time. H2 yield in N2-purged systems containing 2-propanol was found to be more as compared to the without 2-propanol system. The rate of H2 production in N2-purged aqueous solutions containing 0.1% TiO2 suspension were evaluated to be 0.226 and 5.8 μl/h, without and with 0.5 M 2-propanol, respectively. This confirmed that 2-propanol was an efficient hole scavenger and it scavenged photo-generated holes (h+), allowing its counter ion, viz., e, to react with water molecule/H+ to yield more H2. The formation of both CO and CH4 in the photolysis of CO2-purged aqueous solutions containing suspended TiO2 in absence of 2-propanol reveal that the generation of CH4 is taking place mainly through CO intermediate. In presence of air/O2, the yield of H2 in the system without 2-propanol was observed to be negligible as compared to the system containing 2-propanol in which low yield of H2 was obtained with a formation rate of approx. 0.5 μl/h.  相似文献   

8.
Electrocatalytic oxygen reduction was studied on a RuxFeySez(CO)n cluster catalyst with Vulcan carbon powder dispersed into a Nafion film coated on a glassy carbon electrode. The synthesis of the electrocatalyst as a mixture of crystallites and amorphous nanoparticles was carried out by refluxing the transition metal carbonyl compounds in an organic solvent. Electrocatalysis by the cluster compound is discussed, based on the results of rotating disc electrode measurements in a 0.5 M H2SO4. A Tafel slope of −80.00±4.72 mV dec−1 and an exchange current density of 1.1±0.17×10−6 mA cm−2 was calculated from the mass transfer-corrected curve. It was found that the electrochemical reduction reaction follows the kinetics of a multielectronic (n=4e) charge transfer process producing water, i.e. O2+4H++4e→2H2O. Electronic Publication  相似文献   

9.
A 0.5 dm3 aqueous solution of 0.1 M FeCl3 dissolving 1 wt% poly(vinyl alcohol) (PVA) was treated hydrothermally in a stainless steel autoclave at various temperatures (T h=110–200 °C). Highly ordered red corpuscle-like hematite particles around 2 m in diameter were produced after aging the solution at T h=110 °C for 7 days, though large numbers of spherical PVA microgels around 2–4 m in diameter were produced together with the red corpuscle-like particles at T h120 °C. The number of red corpuscle-like hematite particles decreased but that of spherical PVA microgels increased with increasing T h, leading to the proposal that the method carried out in the present study will become a new synthetic method of polymer microgels. The ferric ions acted as a cross-linking agent to make PVA insoluble in water. The red corpuscle-like hematite particles produced at T h=110 °C had high specific surface areas and showed high mesoporosity. The mesoporosity appeared to be more pronounced after evacuating the particles above 300 °C. The diameter of the mesopores after evacuation above 300 °C ranged from 2 to 20 nm, with a maximum at around 5–6 nm. The H2O and N2 adsorption experiments revealed that there are no ultramicropores in the particles. The H2O and CCl4 adsorption experiments further disclosed that the surface hydrophobicity of the particles is low even though PVA molecules remain after evacuation of the particles at 100–400 °C. Furthermore, the micropores produced after evacuation of the particles at 400 °C exhibited a high size restriction effect, i.e., the micropores produced were accessible to H2O (diameter 0.253 nm) and N2 (diameter 0.318 nm) molecules but not to CCl4 (diameter 0.514 nm).  相似文献   

10.
The efflorescence and deliquescence processes of Mg(NO3)2 aerosol particles deposited on ZnSe substrate have been investigated through in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) technique at the molecular level. At relative humidity (RH) of ∼3%, Mg(NO3)2 particles existed as amorphous states. The amorphous Mg(NO3)2 particles were transformed into crystalline Mg(NO3)2 · nH2O (n ≤ 5) with slight increasing of RH. Thermodynamically stable Mg(NO3)2·6H2O crystals were gradually formed on the particle surface and started to be dissolved at the saturation point (∼53% RH). At the same time, a continuous phase transition from Mg(NO3)2 · nH2O (n≤5) to Mg(NO3)2·6H2O occurred on the particle surface. This led the solid particles to completely deliquesce at 76% RH, which was much higher than the saturation point of 53% RH. In the efflorescence process, Mg(NO3)2 droplets entered into the supersaturated region due to the gradual evaporation of water. Finally, amorphous particles were formed when RH decreased below 5%. In the FTIR-ATR spectra of the supersaturated Mg(NO3)2 droplets, the absorbance of the symmetric stretching vibration of NO 3 (v 1- NO 3 ) clearly became stronger. It resulted from the continuous formation of solvent share ion pairs (SIPs), and even the contact ion pairs (CIPs) between Mg2+ and NO 3 . Supported by the Trans-Century Program Foundation for the Talents by the Ministry of Education of China, the National Natural Science Foundation of China (Grant Nos. 20073004, 20473012, and 20673010), the 111 Project (B07012), and the State Key Laboratory of Physical Chemistry for Solid Surface of Xiamen University  相似文献   

11.
TiO2 nanoparticles are widely used for many applications and an understanding of the crystallization behavior of TiO2 is essential, so that heat treatment conditions can be optimized for particular applications. The effect of sol–gel synthesis conditions on the crystallization behavior of TiO2 has, therefore, been investigated. Complete crystallization to the anatase phase (determined by XRD and TEM analysis) was achieved during drying of the synthesis product at 95 °C. The nanoparticles grew during heat treatment, reaching ∼10–15 nm in diameter with a heat treatment at 450 °C. Explanations are offered for the observed differences in the crystallization and particle growth behavior of TiO2 synthesized under various conditions.  相似文献   

12.
The first part of this paper deals with the morphology of the MoS2 phase and its oxide precursor, the MoO3 phase, mainly from a geometrical point of view. After giving a brief review of the literature describing the structure of these compounds, Mo densities in both phases were calculated along various crystallographic planes. Further, using structural models recently proposed by others, Mo densities in MoS2 were also calculated in the case of an epitactic growth on γ-Al2O3 and TiO2 model surfaces. Then, the calculated Mo densities were compared with experimental results (Mo density when HDS activity is maximal) previously obtained for catalysts constituted of MoS2 supported on a low SSA TiO2, a high SSA TiO2 and a conventional γ-alumina. It was suggested that either on alumina or titania the MoS2 phase is growing as (100) MoS2 planes. However, while on the alumina the optimal MoS2 phase might be constituted of dispersed MoS2 slabs covering only a part of the alumina surface (2.9–3.9 Mo atoms/nm2), on titania the optimal MoS2 phase might be constituted of a uniform MoS2 monolayer (5.2 atoms/nm2 for the high SSA titania, which is equal to the Mo density of a perfect MoS2 (100) plane). This difference may originate in the creation of a 'TiMoS' phase enhancing the S atoms mobility over Mo/TiO2-sulfided catalysts. Indeed, while in the case of a γ-alumina carrier the active sites (labile S atoms) are located on the edge of MoS2 slabs making the ratio Moedge/Mototal a crucial parameter for the catalytic performances, in the case of a titania carrier the labile sulfur atoms might be statistically distributed all over the TiMoS active phase. Further, the higher Mo density observed over the high SSA titania (5.2 atoms/nm2) when compared to that over the low SSA titania (4.2 atoms/nm2) was supposedly due to the pH-swing method advantageously used to prepare the former carrier. Indeed, this method allows giving a solid with enhanced mechanical properties providing a good stability to the derived catalysts under experimental conditions. In addition, this TiO2 carrier exhibits a great homogeneity, with a surface structure substantially uniform, which might be adequate for a long-range growth of (100) MoS2 slabs.  相似文献   

13.
The dependence of the specific catalytic activity (A sp ) of the catalysts Pt/SiO2 and Pt/TiO2 in the total oxidation of CH4 and n-C4H10 on the Pt nanoparticle size (in the range from 1 to 4 nm) was studied. The specific catalytic activity increases with an increase in the platinum nanoparticle size, indicating that the total oxidation is a structure-sensitive reaction. The structure sensitivity depends on the size of an oxidized molecule: it increases sharply on going from CH4 to n-C4H10. The support also exerts a considerable effect on the A sp value: in the oxidation of both CH4 and C4H10 the specific catalytic activity for the catalysts Pt/TiO2 is 3–4 times that for Pt/SiO2.  相似文献   

14.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

15.
In our experimental work on carbon nanotubes synthesis, the influence of pre-treatment and reaction temperature conditions over Fe catalyst loaded on low-cost activated carbon (AC) in the catalytic chemical vapor deposition of methane was studied. Catalyst with the metal concentration of 5 mass % calcined at 350°C and reduced at 450°C was effective in CH4 decomposition giving 98 % conversions. TEM images showed that thin multi-walled carbon nanotubes (MWNTs) with the average internal diameter of ∼ 8 nm and the wall thickness of ∼ 2.5 nm were obtained over unreduced Fe/AC catalyst at the reaction temperature of 850°C. On the other hand, broader filamentous nanostructures with the diameter of ∼ 22 nm and the wall thickness of ∼ 3.72 nm were observed over reduced catalyst.  相似文献   

16.
The Gibbs free energies of solvation (ΔG s) and the electronic structures of endohedral metallofullerenes M+@C60 (M+= Li+, K+) were calculated within the framework of the density functional theory and the polarizable continuum model. In water environment, the equilibrium position of K+ is at the center of the fullerene cavity whereas that of Li+ is shifted by 0.14 nm toward the fullerene cage. The Li+ cation is stabilized by interactions with both the fullerene and solvent. The equilibrium structures of both endohedral metallofullerenes are characterized by very close ΔG s values. In particular, the calculated ΔG s values for K+@C60 are in the range from −124 to −149 kJ mol−1 depending on the basis set and on the type of the density functional. Molecular dynamics simulations (TIP3P H2O, OPLS force field, water sphere of radius 1.9 nm) showed that the radial distribution functions of water density around C60 and M+@C60 are very similar, whereas orientations of water dipoles around the endohedral metallofullerenes resemble the hydration pattern of isolated metal ions.  相似文献   

17.
Summary.  Hydrazinium(+2) fluoroarsenate(III) fluoride was prepared by the reaction of hydrazinium(+2) fluoride and liquid arsenic trifluoride. N2H6AsF4F is stable at 273 K, but decomposes slowly at room temperature. N2H6AsF4F crystallizes in the orthorhombic space group Pnn2 with a = 774.0(2) pm, b = 1629.2(4) pm and c = 436.6(1) pm; V = 0.5506(3) nm3, Z = 4 and d c  = 2.461 g cm−3. The structure consists of N2H6 2+ cations, AsF4 anions, and F anions and is interconnected by a hydrogen bonding network. Distorted trigonal-bipyramidal AsF4 units are very weakly interconnected and form chains along the b axis. Bands in the Raman spectrum are assigned to the vibrations of N2H6 +2 cations and AsF4 anions. Corresponding author. E-mail: adolf.jesih@ijs.si Received April 18, 2002; accepted July 15, 2002  相似文献   

18.
Exfoliation-restack method has been employed to synthesize the intercalation compounds based on the cationic complexes [M(Salen)]+ (M = Mn3+, Fe3+, Co3+; Salen = N, N′-ethylene-bis(salicylaldimine)) into the layered MoS2. Their conductivity is in the range of 0.04–0.1 S/cm, which is much higher than the pristine MoS2. Magnetic measurement indicated that the intercalation compounds [Mn(Salen)]0.18MoS2 · 0.25H2O and [Fe(Salen)]0.12MoS2 · 0.3H2O exhibit the temperature-dependent paramagnetism, which obviates from the Curie–Weiss law due to the temperature-independent paramagnetism of the exfoliated MoS2 slabs, while [Co(Salen)]0.14MoS2 · 0.5H2O exhibits the almost temperature-independent paramagnetism. All three intercalation compounds do not show magnetic spin crossover behavior.  相似文献   

19.
Homogeneous manganocolumbite (MnNb2O6) was synthesized from Nb2O5 and MnO oxides. Powder sample was orthorhombic with unit cell parameters: α = 0.5766 nm, b = 1.4439 nm, c = 0.5085 nm and V = 0.4234 nm3. Heat capacity over the temperature range of 313–1253 K was measured in an inert atmosphere with combined thermogravimetry and calorimetry using NETZSCH STA 449C Jupiter thermoanalyzer. Melting point was 1767 ± 3 K, enthalpy of melting was 144 ± 4 kJ mol−1. Experimental heat capacity of MnNb2O6 is fitted to polynomial C pm = 221.46 + 3.03 · 10−3 T + −39.79 · 105 T −2 + 40.59 · 10−6 T 2.  相似文献   

20.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号