首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ishihara K  Nakano K  Akakura M 《Organic letters》2008,10(13):2893-2896
Catalytic and highly enantioselective Diels-Alder reaction of cyclic and acyclic dienes with alpha-phthalimidoacroleins provides cyclic alpha-quaternary alpha-amino acid precursors. The conformationally flexible chiral ammonium salt of H-L-Phe-L-Leu-N(CH(2)CH(2)) 2-reduced triamine with pentafluorobenzensulfonic acid is very effective as an asymmetric catalyst for the Diels-Alder reaction.  相似文献   

2.
The enantioselective Diels-Alder reaction is one of the most important reactions for the synthesis of complex molecules. It provides access to chiral six-membered carbocyclic compounds containing up to four stereogenic centers in a single step. Asymmetric catalysis in the Diels-Alder reaction has mainly been realized using chiral Lewis acids. In this perspective, we describe several cases of chiral Br?nsted-acid and Br?nsted-base catalyzed Diels-Alder reactions, providing an overview of this rapidly growing field.  相似文献   

3.
1-Methoxy-3-trimethylsiloxy-1,3-butadiene (Danishefsky's diene) is recognized as a synthetically useful diene due to its high reactivity in the Diels-Alder reaction with electron-deficient alkenes to give oxygen-functionalyzed cyclohexenes and substituted cyclohexenones, which are important building blocks for the total synthesis of natural products. However, the development of catalytic enantioselective versions of Diels-Alder reactions using Danishefsky type dienes with electron-deficient alkenes has been difficult because of the instability of the dienes under Lewis acidic conditions. Only highly reactive CO and CN double bonds are employed in a hetero-Diels-Alder reaction which proceeds under catalysis of chiral Lewis acids. We have developed a new chiral ligand, BINAMIDE, which is easily prepared from 1,1'-binaphtyl-2,2'-diamine by acylation. The highly diastereo- and enantioselective Diels-Alder reaction of Danishefsky type dienes with electron-deficient alkenes in the presence of an Yb(III)-BINAMIDE complex has been developed. The reaction proceeded in an exoselective mode and gave chiral highly functionalized cyclohexene derivatives in good yields.  相似文献   

4.
We have realized the first enantioselective organocatalytic Diels-Alder reaction between alpha-substituted acroleins, such as alpha-acyloxyacroleins, and not only cyclic but also acyclic dienes. alpha-Acyloxyacroleins are useful as synthetic equivalents of alpha-haloacroleins. The present catalyst could be prepared in situ from pentafluorobenzenesulfonic acid (2.5-3.0 equiv) and chiral triamine (1 equiv) derived from H-l-Phe-l-Leu-N(CH2CH2)2. The enantioselective Diels-Alder reaction of 5-(benzyloxymethyl)cyclopentadiene, cyclopentadiene, cyclohexadiene, 2,3-dimethylbutadiene, and isoprene with alpha-(p-methoxybenzoyloxy)acrolein catalyzed by the above chiral ammonium salt (2.5-20 mol %) at -20-22 degrees C gave the corresponding adducts with 83, 83, 91, 92, and 88% ee, respectively.  相似文献   

5.
Teo YC  Loh TP 《Organic letters》2005,7(13):2539-2541
[reaction: see text] A chiral indium complex has been developed to effect high enantioselectivities in catalyzing enantioselective Diels-Alder reaction. The cycloaddition of a variety of cyclic and open-chained dienes to 2-methacrolein and 2-bromoacrolein resulted in good yields and excellent enantioselectivities (up to 98% ee).  相似文献   

6.
A new catalytic enantioselective conjugate addition of nitroalkanes to acyclic alpha,beta-unsaturated enones catalyzed by novel organic catalysts has been developed. A series of chiral amines has been tested as catalysts for the addition of 2-nitropropane to benzylideneacetone, and it is found that a novel imidazoline catalyst, prepared from phenylalanine, can catalyze a highly enantioselective 1,4-addition reaction. The reaction of various acyclic and cyclic nitroalkanes was found to proceed well with enantioselectivities up to 86% ee, and enantiopure products can be obtained by recrystallization. The potential of the reaction is documented by the reaction of a series of substituted alpha,beta-unsaturated enones with different nitroalkanes. Furthermore, the synthetic applicability of the reaction is demonstrated by the formation of optically active functionalized pyrrolines and pyrrolidines by reductive amination of the products. On the basis of the absolute configuration of the conjugate addition products, the mechanism for the reaction is discussed and a transition state proposed.  相似文献   

7.
A chiral Br?nsted acid has been developed from a cationic gold(I) disphosphine complex in the presence of alcoholic solvent and applied to the enantioselective protonation reaction of silyl enol ethers of ketones. Various optically active cyclic ketones were obtained in excellent yields and high enantioselectivities, including cyclic ketones bearing aliphatic substrates at the α-position. Furthermore, the application of this Br?nsted acid was extended to the first Br?nsted acid-catalyzed enantioselective protonation reaction of silyl enol ethers of acyclic substrates, regardless of their E/Z ratio.  相似文献   

8.
This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to 2 orders of magnitude compared to Cu-L1 catalysis alone. Furthermore, both the enantioselectivity and the rate enhancement prove to be dependent on the DNA-sequence. These features are the main reasons for the efficient and enantioselective catalysis observed with salmon testes DNA/Cu-L1 in the Diels-Alder reaction. The fact that absolute levels of stereocontrol can be achieved with a simple and weak DNA-binding complex like Cu-L1 is a clear demonstration of the power of the supramolecular approach to hybrid catalysis.  相似文献   

9.
The first direct enantioselective organocatalytic intramolecular Diels-Alder reaction has been accomplished. The use of iminium catalysis has provided a new catalytic strategy for the enantioselective [4 + 2] cycloisomerization of a wide variety of tethered diene-enal systems. The use of imidazolidinones 1 and 2 as the asymmetric catalysts has been found to mediate the enantioselective construction of [4.4.0] and [4.3.0] ring systems. Application of this methodology to the highly efficient asymmetric synthesis of the marine metabolite solanpyrone D has also been accomplished. A diverse spectrum of aldehyde substrates can also be accommodated in this new organocatalytic transformation. Importantly, this technology has been utilized to execute the first enantioselective, catalytic Type II IMDA reaction.  相似文献   

10.
Organocatalytic transfer hydrogenation of cyclic enones   总被引:1,自引:0,他引:1  
The first enantioselective organocatalytic transfer hydrogenation of cyclic enones has been accomplished. The use of iminium catalysis has provided a new organocatalytic strategy for the enantioselective reduction of beta,beta-substituted alpha,beta-unsaturated cycloalkenones, to generate beta-stereogenic cyclic ketones. The use of imidazolidinone 4 as the asymmetric catalyst has been found to mediate the hydrogenation of a large class of enone substrates with tert-butyl Hantzsch ester serving as an inexpensive source of hydrogen. The capacity of catalyst 4 to enable enantioselective transfer hydrogenation of cycloalkenones has been extended to five-, six-, and seven-membered ring systems. The sense of asymmetric induction is in complete accord with the stereochemical model first reported in conjunction with the use of catalyst 4 for enantioselective ketone Diels-Alder reactions.  相似文献   

11.
A catalytic direct enantioselective electrophilic amination of beta-keto phosphonates has been developed applying chiral bisoxazoline-zinc(II) complexes as the catalyst. The reaction proceeds well for both acyclic and cyclic substrates in high yields and with up to 98% ee using azodicarboxylates as the nitrogen source. The scope of the reaction is, for example, the further transformation to optically active beta-hydroxy-alpha-amino phosphonates with very high stereoselection.  相似文献   

12.
Asymmetric catalysis is a challenge for chemists: How can we design catalysts to achieve the goal of forming optically active compounds? This review provides the reader with an overview of the development of catalytic asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines. Since its discovery, the Diels-Alder reaction has undergone intensive development and is of fundamental importance for synthetic, physical, and theoretical chemists. The Diels-Alder reaction has been through different stages of development, and at the beginning of the 21st century catalytic Diels-Alder reactions are one of the main areas of focus. The preparation of numerous compounds of importance for our society is based on cycloaddition reactions to carbonyl compounds and imines. There are several parallels between the reactions of carbonyl compounds and those of imines, which, however, begin to vanish on entering the field of catalytic reactions. Why? From a mechanistic point of view some similarities can be drawn, but the synthetic development of catalytic enantioselective hetero-Diels-Alder reactions of imines are several years behind those of the carbonyl compounds. For hetero-Diels-Alder reactions of carbonyl compounds there a number of different chiral catalysts, and great progress has been achieved in developing enantioselective reactions for unactivated and activated carbonyl compounds. In contrast the development of catalytic enantioselective hetero-Diels-Alder reactions of imines is in its infancy and only few catalytic reactions have been published. This review will focus on the most important developments, and discuss the synthetic and mechanistic aspects of enantioselective hetero-Diels-Alder reactions of carbonyl compounds catalyzed by chiral Lewis acids. For the hetero-Diels-Alder reactions of imines, the diastereoselective reactions of optically substrates catalyzed by Lewis acids will be presented first, followed by the catalytic enantioselective reactions.  相似文献   

13.
The enantioselective [2 + 2 + 2] cycloaddition of 1,6-diynes with alpha-methylene lactones and cyclic ketones gave various chiral spirocyclic compounds. The reaction proceeded with high enantioselectivity when the rhodium-xylylBINAP complex was used as a chiral catalyst. Not only exo-methylene cyclic compounds but also exo-methylene acyclic compounds could be used as coupling partners for diynes. The present protocol provides access to a new chiral library possessing a quaternary carbon center, including a spirocyclic system.  相似文献   

14.
A catalytic and enantioselective Diels-Alder reaction of α-(carbamoylthio)acroleins induced by an organoammonium salt of chiral triamine is described. α-(Carbamoylthio)acroleins are designed and synthesized as new sulfur-containing dienophiles for the first time. The Diels-Alder reaction affords chiral tertiary thiol precursors with up to 91% ee.  相似文献   

15.
Asymmetric catalysis under almost‐neutral reaction conditions is key for the efficient synthesis of optically active polar molecules. We have developed catalytic enantioselective reactions of acyclic or cyclic alkenyl esters by using an (S)‐BINOL‐derived chiral tin‐dibromide reagent that possesses a bulky aryl group at the 3 or 3′ position as the chiral pre‐catalyst in the presence of a sodium alkoxide and an alcohol, in which a chiral tin alkoxide bromide is generated in situ and recycled with the assistance of an alcohol. In this Personal Account, we describe three types of asymmetric transformation that proceed through a chiral tin enolate: 1) The asymmetric aldol reaction of alkenyl esters or unsaturated lactones with aldehydes or isatins; 2) the asymmetric three‐component Mannich‐type reaction of alkenyl esters and related cycloaddition reactions; and 3) the asymmetric N‐nitroso aldol reaction of unsaturated lactones with nitrosoarenes.  相似文献   

16.
The four-step synthesis of a chiral primary tertiary diamine salt, possessing a tropos dibenz[c,e]azepine ring is described. It is shown that 3.5-5 mol % of this salt is capable of promoting highly enantioselective crossed-aldol reactions between cyclohexanone and a series of aromatic aldehydes. In all cases, the aldol reactions proceed with high diastereoselectivity for the anti-aldol product. The outcome of crossed-aldol reactions involving other cyclic ketones and acyclic ketones are also described. All examples involving cyclic ketones result in selectivity for the anti-aldol products, whereas acyclic ketones were found to favour the syn-aldol products. A discussion on the role of the chiral primary tertiary diamine salt in the catalysis of the aldol reactions is also presented.  相似文献   

17.
A catalytic enantioselective aza-Diels-Alder reaction of imines has been developed. The reaction of N-tosyl alpha-imino ester with different dienes including activated, non-activated, cyclic, and acyclic dienes has been investigated in the presence of various chiral Lewis acids. A series of phosphino-oxazoline ligands have been synthesized and evaluated for the reaction. It was found that the combination of phosphino-oxazoline ligands with copper(I) salts gives the best results for the activated dienes, while BINAP-copper(I) complexes are good catalysts for all the dienes studied. In the case of activated acyclic dienes the aza-Diels-Alder products can be obtained in higher than 80% isolated yield and 96% ee, while for the unactivated cyclic dienes the exo diastereomer is formed as the major product in up to 95 % ee. For an activated cyclic conjugated diene, 2-trimethylsilyloxy-1,3-cyclohexadiene, the reaction proceeds as a Mannich-type addition reaction giving optically active gamma-oxo alpha-amino acid derivatives in good yields and up to 96% ee. The reaction of an unactivated acyclic diene, 2,3-dimethyl-1,3-butadiene, with the N-tosyl alpha-imino ester gives both the aza-Diels-Alder and aza-ene products, in a ratio of 9:1 favoring the aza-Diels-Alder product. Furthermore, a series of different imines have been synthesized and investigated as possible substrates for the present catalytic enantioselective aza-Diels-Alder reaction in order to obtain mechanistic insight. All imines studied gave moderate to high ee. Particularly, the reaction of the N-phenyl and N-p-methoxyphenyl substituted glyoxylate imines with Danishefsky's diene proceeded well affording the corresponding aza-Diels-Alder product in high yield with up to 91% ee at room temperature. The present catalytic enantioselective reaction of imines provided an effective route to optically active nonproteinogenic alpha-amino acids. The products of the catalytic enantioselective aza-Diels-Alder reaction of the cyclic dienes can be used for the preparation of key compounds such as natural products and compounds of pharmaceutical interest. The absolute configurations of five products have been solved by X-ray structural analysis, and it is found that the absolute configuration of the aza-Diels-Alder adduct is dependent on the substituent on the imine nitrogen atom. It turned out that the N-tosyl glyoxylate imine and N-p-methoxyphenyl glyoxylate imine give the aza-Diels-Alder adduct with opposite absolute configuration using the same enantiomer of the catalyst. On the basis of the results the mechanistic aspects for the reactions are discussed.  相似文献   

18.
手性胺-质子酸是近年来发展起来的新型高效、高对映选择性的有机催化体系, 已成功应用于催化不对称Aldol反应、Michael加成反应、Diels-Alder反应和Strecker反应等许多重要的有机合成反应. 价廉易得的质子酸的引入不仅可促进活性中间体烯胺的生成, 并可通过形成的氢键稳定反应的过渡态, 从而显著提高该催化体系的催化活性和立体选择性. 对各类手性胺-质子酸催化剂在有机催化不对称合成反应中的应用、不对称诱导反应的机理、手性胺和质子酸的分子结构对其催化活性和不对称诱导活性的影响进行了评述.  相似文献   

19.
A new enantioselective synthesis of ABEF ring analogues of methyllycaconitine has been developed using a chiral cobalt(III) salen-catalyzed Diels-Alder reaction to form the B ring. Subsequent elaboration to form the A, E and F rings was achieved by sequential Dieckmann, Mannich and Wacker-type cyclizations to afford tetracyclic analogues in 97.5% ee.  相似文献   

20.
A novel strategy for highly efficient utilization of chiral ammonium salt catalysts has been described in this paper. Three kinds of catalytic functions including iminium catalysis, enamine catalysis, and acid catalysis of chiral ammonium salt catalysts, have been achieved in the enantioselective reduction and alkylation reaction of α,β-unsaturated aldehydes with alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号