首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of poly(acrylic acid) (PAA) in aqueous suspension onto the surface of TiO(2) nanoparticles was investigated. FTIR spectroscopic data provided evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-TiO(2) system. Adsorption isotherms demonstrated that part of the PAA initially added to the suspension was adsorbed onto the TiO(2) surface, after which there was a gradual attainment of an adsorption plateau. The adsorption density of PAA was found to increase with an increase of PAA molecular weight, while it decreased with an increase of pH. The thickness of the PAA adsorption layer was calculated based on measurements of suspension viscosities in the absence and presence of PAA. It was shown that the thickness of the adsorption layer increased with the increase of pH, PAA molecular weight, and its concentration. The surface charge density, the diffuse charge density, and the zeta potential of TiO(2) varied distinctly after PAA adsorption. The shift of pH(iep) toward a lower pH value was observed in the presence of PAA. PAA was found to stabilize the suspension of TiO(2) nanoparticles through electrosteric repulsion. The influence of factors such as PAA molecular weight and its concentration on the colloidal stability of the aqueous suspension was also investigated.  相似文献   

2.
Fine composite powders of yttria (3 mol%) stabilized zirconia (Z, 10 wt%) and hydroxyapatite (HA), denoted as HAZ, were prepared by the co-precipitation method. The resulting powders were characterized by XRF, TEM, EDS, XRD, FTIR, TG-DTA, and BET surface area techniques. AES and FTIR were employed to determine the surface properties of the HAZ suspensions in the presence of NH4PAA as a dispersant, which confirmed that the surfaces of both HA and Z were affected by the adsorbed polymers. The mechanism of NH4PAA adsorption on the particles was discussed. Zeta potential measurements showed that the addition of NH4PAA resulted in a dramatic increase in the absolute value of zeta potential. NH4PAA considerably enhanced the stability of the HAZ suspension via electrosteric barrier mechanisms. TEM micrographs confirmed that particles were well dispersed in the suspension. The adsorption density of the dispersant was found to decrease with an increase in pH value.  相似文献   

3.
Adsorption studies of monosubstituted benzene molecules with various functional groups on doped lanthanum chromite/cyclohexane surface have been performed. The results from the adsorption study can be used in selecting appropriate anchoring groups on the dispersant. It was found that high amount of O relative lo La on the LaCrO3 surface correlated with high amounts of adsorbed benzoic acid. Increase in the La content relative to the O on the powder surface increased the amount of adsorbed benzylamine. The high amount of benzoic acid adsorbed on 20% Ca-doped lanthanum chromite powder (Al)lated well with good colloidal stability caused by a carboxylic acid containing dispersant. Rheology experiments showed that a low degree of agglomeration is obtained using only a small amount of the carboxylic acid containing dispersant (Hypermer LP1). Etectrophoretic mobility measurements in water of this powder coated with the LP1 dispersant indicated electrosteric stabilisation.  相似文献   

4.
聚丙烯酸在纳米TiO2表面吸附行为的研究   总被引:1,自引:0,他引:1  
讨论了聚丙烯酸在纳米TiO2水悬浮体系中的吸附行为.红外光谱分析和吸附实验结果表明,纳米TiO2通过氢键吸附PAA.PAA吸附量随着浓度的升高而增大直至饱和吸附量,且分子量越大,饱和吸附量越大.pH值增大,则饱和吸附量减小.在相同条件下,表面吸附层的厚度随PAA分子量、浓度和pH值增大而增大.这是由PAA在颗粒表面构型的变化所致.吸附PAA后的纳米TiO2的表面电荷密度和ζ电位发生变化,pHiep值向低值方向移动.表面吸附自由能的计算结果说明,PAA在纳米TiO2表面的吸附是自发过程.  相似文献   

5.
In this study a systematic investigation on the adsorption of polyethylene oxide (PEO) onto the surface of silica particles and the viscosity behavior of concentrated dispersions of silica particles with adsorbed PEO has been performed. The variation of shear viscosity with the adsorbed layer density, concentration of free polymer in the solution (depletion forces), polymer molecular weight, and adsorbed layer thickness at different salt concentrations (range of the electrostatic repulsion between particles) is presented and discussed. Adsorption and rheological studies were performed on suspensions of silica particles dispersed in solutions of 10−2 M and 10−4 M NaNO3 containing PEO of molecular weights 7,500 and 18,500 of different concentrations. Adsorption measurements gave evidence of a primary plateau in the adsorption density of 7,500 MW PEO at an electrolyte concentration of 10−2 M NaNO3. Results indicate that the range of the electrostatic repulsion between the suspended particles affects both adsorption density of the polymer onto the surface of the particles and the viscosity behavior of the system. The adsorbed layer thickness was estimated from the values of zeta potential in the presence and absence of the polymer and was found to decrease with decreasing the range of the electrostatic repulsive forces between the particles. Experimental results show that even though there is a direct relation between the viscosity of the suspension and the adsorption density of the polymer onto the surface of the particles, variation of viscosity with adsorption density, equilibrium concentration of the polymer, and range of the electrostatic repulsion cannot be explained just in term of the effective volume fraction of the particles and needs to be further investigated. Received: 15 February 2000/Accepted: 26 June 2000  相似文献   

6.
The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes.  相似文献   

7.
8.
The rheological responses of aqueous alumina suspensions, stabilized with an organic polyvalent salt dispersant called “Aluminon,” and including a poly(vinyl) alcohol (PVA) binder, are described in this study. It is observed that the addition of PVA, without any dispersant does not significantly influence the rheology. However, in the presence of the dispersant the rheology is affected significantly. At a given concentration of the dispersant, the viscosity, the storage and loss modulii all increase with the PVA concentration. Also, for a given concentration of the PVA, the viscosity, the storage and loss modulii values increases as the concentration of the dispersant is increased. At relatively low PVA concentrations, an excess concentration of the dispersant, causes flocculation of the particles in the suspension by a reduction of the electrostatic (double layer) effect. On the contrary, at higher concentrations of the PVA the flocculation of the suspension occurs via a depletion mechanism.  相似文献   

9.
The effects of a poly(acrylic acid) (PAA)-poly(ethylene) (PEO) comb polymer dispersant on the rheological properties and inter-particle forces in aqueous silica suspensions have been studied under varying pH conditions. The comb polymer was found to adsorb more strongly under acidic than basic conditions, indicating that the PAA backbone of the copolymer preferentially adsorbs onto silica surfaces with the PEO "teeth" extending out from the surface into the solution. In the presence of low concentrations of copolymer, the silica suspensions were stable due to electrostatic repulsions between the silica surfaces. At higher copolymer concentrations and under neutral and basic conditions, where the copolymer interacted only weakly with silica, the suspensions showed a transition from a dispersed to weakly flocculated state and attractive forces were measured between silica surfaces. Under acidic conditions, the silica dispersion also destabilized at intermediate copolymer adsorbed density and then was re-stabilized at higher adsorbed coverage. The silica suspensions were stable at high copolymer coverage due to steric repulsions between the particles. The destabilization at intermediate coverage is thought to be due to polymer bridging between particles or possibly depletion forces.  相似文献   

10.
The colloidal behavior of natural organic matter (NOM) and synthetic poly(acrylic acid) (PAA)-coated ferrimagnetic (γFe(2)O(3)) nanoparticles (NPs) was investigated. Humic acid (HA), an important component of NOM, was extracted from a peat soil. Two different molecular weight PAAs were also used for coating. The colloidal stability of the coated magnetic NPs was evaluated as a resultant of the attractive magnetic dipolar and van der Waals forces and the repulsive electrostatic and steric-electrosteric interactions. The conformational alterations of the polyelectrolytes adsorbed on magnetic γFe(2)O(3) NPs and their role in colloidal stability were determined. Pure γFe(2)O(3) NPs were extremely unstable because of aggregation in aqueous solution, but a significant stability enhancement was observed after coating with polyelectrolytes. The steric stabilization factor induced by the polyelectrolyte coating strongly dictated the colloidal stability. The pH-induced conformational change of the adsorbed, weakly charged polyelectrolytes had a significant effect on the colloidal stability. Atomic force microscopy (AFM) revealed the stretched conformation of the HA molecular chains adsorbed on the γFe(2)O(3) NP surface at pH 9, which enhanced the colloidal stability through long-range electrosteric stabilization. The depletion of the polyelectrolyte during the dilution of the NP suspension decreased the colloidal stability under acidic solution conditions. The conformation of the polyelectrolytes adsorbed on the NP surface was altered as a function of the substrate surface charge as viewed from AFM imaging. The polyelectrolyte coating also led to a reduction in magnetic moments and decreased the coercivity of the coated γFe(2)O(3) NPs. Thus, the enhanced stabilization of the coated maghematite NPs may facilitate their delivery in the groundwater for the effective removal of contaminants.  相似文献   

11.
Janus magnetic nanoparticles (~20 nm) were prepared by grafting either polystyrene sodium sulfonate (PSSNa) or polydimethylamino ethylmethacrylate (PDMAEMA) to the exposed surfaces of negatively charged poly(acrylic acid) (PAA)-coated magnetite nanoparticles adsorbed onto positively charged silica beads. Individually dispersed Janus nanoparticles were obtained by repulsion from the beads on reversal of the silica surface charge when the solution pH was increased. Controlled aggregation of the Janus nanoparticles was observed at low pH values, with the formation of stable clusters of approximately 2-4 times the initial size of the particles. Cluster formation was reversed, and individually dispersed nanoparticles recovered, by restoring the pH to high values. At intermediate pH values, PSSNa Janus nanoparticles showed moderate clustering, while PDMAEMA Janus nanoparticles aggregated uncontrollably due to dipolar interactions. The size of the stable clusters could be controlled by increasing the molecular weight of the grafted polymer, or by decreasing the magnetic nanoparticle surface availability for grafting, both of which yielded larger cluster sizes. The addition of small amounts of PAA-coated magnetic nanoparticles to the Janus nanoparticle suspension resulted in a further increase in the final cluster size. Monte Carlo simulation results compared favorably with experimental observations and showed the formation of small, elongated clusters similar in structure to those observed in cryo-TEM images.  相似文献   

12.
The adsorption of lignosulfonate onto a commercial, modified lead zirconate titanate (PZT-PNN) powder in aqueous suspension and its effect on particle zeta potential and suspension rheology were investigated as functions of pH and lignosulfonate dosage. Langmuir analysis of the adsorption data demonstrated that a significant component of the overall driving force of adsorption at all pH values examined was specific (nonelectrostatic) bonding. Electrostatic bonding provided a significant contribution to adsorption at pH 6.0, but diminished at lower pH owing to decreased lignosulfonate ionization and at higher pH due to decreased positive surface site concentration on the PZT-PNN. The affinity of adsorption was highest at pH 6.0 because the electrostatic component was maximal at this pH. The zeta potential magnitude increased and the apparent viscosity decreased with increasing pH and increasing lignosulfonate dosage, up to approximately monolayer coverage. The lignosulfonate dosage required for monolayer coverage decreased with increasing pH owing to increasing lignosulfonate expansion and the decrease in concentration of positive surface sites on the PZT-PNN. Suspension stabilization was considered to occur by an electrosteric mechanism.  相似文献   

13.
Citric acid plays an important role as a stabilizer in several nanomaterial syntheses and is a common organic acid found in nature. Here, the adsorption of citric acid onto TiO(2) anatase nanoparticles with a particle diameter of ca. 4 nm is investigated at circumneutral and acidic pHs. This study focuses on both the details of the surface chemistry of citric acid on TiO(2), including measurements of surface coverage and speciation, and its impact on nanoparticle behavior. Using macroscopic and molecular-based probes, citric acid adsorption and nanoparticle interactions are measured with quantitative solution phase adsorption measurements, attenuated total reflection-FTIR spectroscopy, dynamic light scattering techniques, and zeta-potential measurements as a function of solution pH. The results show that surface coverage is a function of pH and decreases with increasing pH. Surface speciation differs from the bulk solution and is time dependent. After equilibration, the fully deprotonated citrate ion is present on the surface regardless of the highly acidic solution pH indicating pK(a) values of surface adsorbed species are lower than those in solution. Nanoparticle interactions are also probed through measurements of aggregation and the data show that these interactions are complex and depend on the detailed interplay between bulk solution pH and surface chemistry.  相似文献   

14.
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.  相似文献   

15.
In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.  相似文献   

16.
The molecular structures of the interfaces between a solid poly(4‐vinyl pyridine) (P4VP) surface and poly(acrylic acid) (PAA) as well as hydrochloric acid (HCl) solutions were probed using sum frequency generation (SFG) vibrational spectroscopy in situ in real time. Spectroscopic results clearly reveal that the PAA molecules are adsorbed onto the P4VP surface via hydrogen bonding at the P4VP/PAA solution interface while the P4VP surface is protonated at the P4VP/HCl solution interface. Consequently, the water molecules near the interfaces are strongly perturbed by these two interactions, exhibiting different orderings at the two interfaces. This work clearly demonstrates the power of studying the interfacial molecular‐level structures via nonlinear vibrational spectroscopy when molecular adsorption happens at the solid–liquid interface and paves a way for our future study on tracing the adsorption dynamics of polymer chains onto solid surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 848–852  相似文献   

17.
Adsorption of glucose oxidase (GOD) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical measurements. The PPF surface is very flat (less than 1-nm roughness), and its properties (charge and wettability) can be easily changed while retaining the backbone structure. We focused on three types of surfaces: (1) the pristine surface of hexamethyldisiloxane (HMDS) PPF (hydrophobic and neutral surface), (2) an HMDS PPF surface with nitrogen-plasma treatment (hydrophilic and positive-charged surface), and (3) an HMDS PPF surface treated with oxygen plasma (hydrophilic and negative-charged surface). The AFM image showed that the GOD molecules were densely adsorbed onto surface 2 and that individual GOD molecules could be observed. The longer axis of GOD ellipsoid molecules were aligned parallel to the surface, called the "lying position", because of electrostatic association. On surface 1, clusters of GOD molecules did not completely cover the original PPF surface (surface coverage was ca. 60%). The 10-nm-size step height between the GOD clusters and the PPF surface suggests that the longer axes of individual GOD molecules were aligned perpendicular to the surface, called the "standing position". On surface 3, only a few of the GOD molecules were adsorbed because of electrostatic repulsion. These results indicate that the plasma polymerization process can facilitate enhancement or reduction of protein adsorption. The AFM images show a corresponding tendency with the QCM profiles. The QCM data indicate that the adsorption behavior obeys the Langmuir isotherm equation. The amperometric biosensor characteristics of the GOD-adsorbed PPF on a platinum electrode showed an increment in the current because of enzymatic reaction with glucose addition, indicating that enzyme activity was mostly retained in spite of irreversible adsorption.  相似文献   

18.
The effect of polyvinylpyrrolidone (PVP) on rheology of aqueous SiC suspensions stabilized with polyacrylic acid (PAA) was investigated. At pH 6.0, as the total amount of dispersants was fixed at 0.3 wt%, the suspensions with co-addition of PAA and PVP obtained much lower viscosity than those added separately, displaying Newtonian behavior. The improvement in rheology of SiC suspensions arose from enhanced steric hindrance, which was caused by the presence of PVP molecules in association with PAA molecules adsorbed on SiC particle surfaces. However, this effect was relatively weak in alkaline condition because of complete dissociation of PAA.  相似文献   

19.
Gold nanoparticles (Au NPs) from 5 to 100 nm in size synthesized with HAuCl(4) and sodium citrate were complexed with the plasma protein human serum albumin (HSA). Size, surface charge, and surface plasmon bands of the Au NPs are largely modified by the formation of a protein corona via electrostatic interactions and hydrogen bonding as revealed by thermodynamic data. Negative values of the entropy of binding suggested a restriction in the biomolecule mobility upon adsorption. The structure of the adsorbed protein molecules is slightly affected by the interaction with the metal surface, but this effect is enhanced as the NP curvature decreases. Also, it is observed that the protein molecules adsorbed onto the NP surface are more resistant to complete thermal denaturation than free protein ones as deduced from the increases in the melting temperature of the adsorbed protein. Differences in the conformations of the adsorbed protein molecules onto small (<40 nm) and large NPs were observed on the basis of ζ-potential data and FTIR spectroscopy, also suggesting a better resistance of adsorbed protein molecules to thermal denaturing conditions. We think this enhanced protein stability is responsible for a reduced formation of HSA amyloid-like fibrils in the presence of small Au NPs under HSA fibrillation conditions.  相似文献   

20.
Exfoliated graphene particles stabilised by the cationic polyelectrolyte polyethyleneimine (PEI) were used in conjunction with an anionic polyelectrolyte, poly(acrylic acid), to construct multilayers using the layer-by-layer technique on a silica substrate. In the first adsorption step, the surface excess of the cationic graphene was dependent on the overall charge on the nanoparticle which in turn can be tuned through modifying solution pH as PEI has weakly ionisable charged amine groups. The adsorbed amount onto the silica surface increased as the solution pH increased. Subsequently, a layer of PAA was adsorbed on top of the cationic graphene through electrostatic interaction. The multilayer could be assembled through this alternate deposition, with the influence of solution conditions investigated. The pH of the adsorbing solutions was the chief determinant of the overall adsorbed amounts, with more mass added at the elevated pH of 9 in comparison with pH 4. Atomic force microscopy confirmed that the graphene particles were adsorbed to the silica interface and that the surface coverage of the disc-like nanoparticles was complete after the deposition of five graphene-polyelectrolyte bi-layers. Furthermore, the graphene nanoparticles themselves could be modified through the consecutive addition of the oppositely charged polymers. A multilayered assembly of negatively charged graphene sheets modified with a bi-layer of PEI and PAA was also deposited on a silica surface with adsorbed PEI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号