首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The inception process of nucleation in explosive boiling systems is theoretically investigated. With the effect of pulse heating or sudden cooling, the temperature distribution near the surface during explosive boiling is calculated. The liquid near the wall can maintain a stable layer induced by strong attractive force, and there exists maximum supersaturation beyond this stable layer. As the surface temperature and temperature gradient are high enough, the critical distance of maximum supersaturation can be larger than the radius of critical bubble, and the homogeneous nucleation will dominate the inception boiling process. For explosive boiling induced by pulse heating, homogeneous nucleation forms after a short time; while homogeneous nucleation can dominate the initial explosive boiling induced by sudden cooling.  相似文献   

2.
During the collapse of a bubble near a surface, a high-speed liquid jet often forms and subsequently impacts upon the opposite bubble surface. The jet impact transforms the originally singly-connected bubble to a toroidal bubble, and generates circulation in the flow around it. A toroidal bubble simulation is presented by introducing a vortex ring seeded inside the bubble torus to account for the circulation. The velocity potential is then decomposed into the potential of the vortex ring and a remnant potential. Because the remnant potential is continuous and satisfies the Laplace equation, it can be modelled by the boundary-integral method, and this circumvents an explicit domain cut and associated numerical treatment. The method is applied to study the collapse of gas bubbles in the vicinity of a rigid wall. Good agreement is found with the results of Best (J. Fluid Mech. 251 79–107, 1993), obtained by a domain cut method. Examination of the pressure impulse on the wall during jet impact indicates that the high-speed liquid jet has a significant potential for causing damage to a surface. There appears to be an optimal initial distance where the liquid jet is most damaging.  相似文献   

3.
The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the liquid. The dynamics is explored for different bubble wall normal distances and triggering shock intensities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pressure and temperatures are found also at the wall, confirming that the strong localized loading combined with the jet impinging the wall is a potential source of substrate damage induced by the cavitation.  相似文献   

4.
A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier–Stokes equation in the liquid region is solved by MAC projection algorithm combined with second-order ENO scheme for the advection terms. The moving interface is captured by the level set function, and the interface velocity is resolved by “one-side” velocity extension from the liquid region to the bubble region, complementing the second-order weighted least squares method across the interface and projection inside bubble. The use of non-uniform grid overcomes the difficulty caused by the large computational domain and very small bubble size. The computation is very stable without suffering from large flow-field gradients, and the results are in good agreements with other studies. The bubble interface kinematics, dynamics and its effect on the wall are highlighted, which shows that the code can effectively capture the “shock wave”-like pressure and velocity at jet impact, toroidal bubble, and complicated pressure structure with peak, plateau and valley in the later stage of bubble oscillating. The project supported by the National Natural Science Foundation of China (10272032 and 10672043). The English text was polished by Keren Wang.  相似文献   

5.
李帅  张阿漫  韩蕊 《力学学报》2019,51(6):1666-1681
具有脉动特性的气泡(如水下爆炸气泡、螺旋桨空泡和气枪气泡)动力学行为很大程度上取决于其边界条件. 实验已证实,近自由液面气泡在坍塌过程中常常产生背离自由液面的水射流现象,而近刚性边界气泡在坍塌阶段产生朝向壁面的高速水射流,严重威胁水中结构的局部强度. 前人基于 Rayleigh-Plesset 气泡理论和 “Bjerknes” 力来预测气泡射流方向,然而理论方法难以透彻的揭示气泡射流的初生、发展和砰击过程中丰富的力学机理. 本文首先采用水下高压放电技术产生气泡,并通过高速摄影对不同边界条件下气泡的运动特性进行实验研究. 然后,采用边界积分法模拟气泡非球状坍塌过程. 研究表明,边界条件改变了气泡周围的流场压力梯度方向,进而影响气泡射流初生位置;射流在发展阶段,气泡附近流场的局部高压区和射流之间存在“正反馈效应”,从而揭示了气泡射流速度在短时间内即可增加到百米每秒的力学机理. 射流砰击会在流场中造成局部高压区,随着气泡回弹,射流速度和砰击压力逐渐减小. 本文还探讨了无量纲距离参数对气泡运动及射流砰击载荷的影响,旨为近场水下爆炸等相关领域提供参考.   相似文献   

6.
As is known, the collapse of vapor bubbles in a liquid can cause the intensive destruction of solid boundary surfaces. Experimental and theoretical investigations of bubble collapse have led to the conclusion that the surface of a bubble can deform and a liquid jet directed toward the solid surface can form in the process [1, 2]. In the theoretical reports [3, 4] too low jet velocities were obtained, inadequate to explain the destruction of the surface in a single impact. In [5] it was found as a result of numerical calculations that the formation of jets possessing enormous velocities is possible. It was also found that two fundamentally different schemes of jet formation are possible in the collapse of a bubble near a wall. The transition from one scheme to the other occurs upon a relatively small change in the initial shape of the bubble. In the present report we investigate the case of sufficiently small initial deformations of a bubble when the region occupied by the bubble remains simply connected during the formation of the jet; i.e., the separation of a small bubble from the bubble does not occur. In the case of the second scheme of bubble collapse near a wall the connectedness of the free boundary is disrupted and a small bubble separates off during the formation of the jet.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 94–99, May–June, 1979.  相似文献   

7.
This paper investigates experimentally the development of the viscous sublayer in a two-dimensional incompressible turbulent wall boundary layer under severe pressure gradients. The wall was also moderately heated and the influence of heat transfer on the development of the viscous sublayer was included. A semi-empirical equation for the thickness of the viscous sublayer: $$\delta _s = 11.5\frac{\nu }{{U_\tau }}(0.61\frac{{T_\omega }}{{T_s }})^{1/2}$$ was derived, which holds everywhere except closely near the separation point of the boundary layer. The measurements were made on a flat plate in a test section 1.7 m long and 0.8 m wide. The height and shape of the top surface of the test section could be varied, and thus it was possible to imposed different pressure gradients on the flow. Specially designed fine probes facilitated the measurement of the velocity distribution very close to the wall.  相似文献   

8.
The rise of a buoyant bubble and its interaction with a target horizontal wall is simulated with a 2-D numerical code based on the Boundary Element Method (BEM). Developed from a viscous potential flow approximation, the BEM takes into account only the part of the energy dissipation related to the normal viscous stresses. Hence, a simple analytical model based on lubrication approximation is coupled to the BEM in order to compute the drainage of the interstitial liquid film filling the gap between the bubble and the near wall. In this way the bubble–wall interaction is fully computed: the approach stage, the bubble deformation stage and, depending on the values of the Reynolds number and the Weber number, the rebound and the bubble oscillations. From computation of both the bubble interface motion and the liquid velocity field, a physical analysis in terms of energy budget is proposed. Though, in the present study, the bubble under consideration is basically supposed to be a 2-D gaseous cylinder, a comparison between our numerical results and the experiments of Tsao and Koch (1997) enlightens interestingly the physics of bouncing.  相似文献   

9.
陈家成  陈泰然  韩磊  耿昊  谭树林 《力学学报》2022,54(9):2387-2400
本文专门设计搭建了低温介质空泡演化实验测试平台,对液氮单空泡非定常演化过程和动力学特性开展了实验研究.实验中利用电火花瞬态放电激发液氮汽化形成单空泡,通过高速摄影系统对单空泡的瞬态特征进行了精细化捕捉.为了进一步揭示低温介质独特的物理性质以及强热力学效应对单空泡演化过程的影响机制,对比分析了在相同环境压力下, 77.41 K液氮和298.36 K水单空泡的演化过程和动力学特性.基于实验得到空泡半径与界面速度等定量数据,阐明了液氮单空泡球形与非球形演化阶段的非定常特性.研究结果表明:(1)在相同输入电压下,液氮单空泡的整体尺寸比常温水更小,当输入电压为400 V时,液氮空泡的最大半径约为常温水空泡的0.69倍;同时,液氮单空泡经历了膨胀阶段-收缩阶段-振荡阶段以及上升阶段的演化过程.(2)液氮空泡的收缩过程主要由相界面的热传导主导,没有明显的塌陷现象,收缩阶段液氮空泡的最小收缩半径约为常温水的5.5倍.(3)在液氮空泡振荡初期,空泡相界面传热增强, Rayleigh-Taylor不稳定与热力学效应共同引起了空泡界面的表面粗化效应;在整个振荡阶段,空泡界面附近存在破碎的小泡.当输入电压较高...  相似文献   

10.
油-气润滑系统工作过程中,润滑油膜受微油滴冲击和压缩空气扰动影响易形成气泡夹带现象,气泡夹带行为将对壁面润滑油膜层的形成及流动过程产生重要影响。基于VOF数值模拟方法,对含气泡油膜沿倾斜壁面的流动行为进行研究,考察了气泡的存在对油膜形态和流动速度的影响规律,以及气泡破裂阶段空腔邻域内流体压力变化特性。研究表明,油膜夹带气泡的形变和迁移诱发气泡周围微流场的速度扰动现象,导致气液界面处产生非均匀速度梯度分布,进而引发油膜表面的形态波动。气泡发生破裂时,油膜空穴部位发生明显的正负压力波动现象,气泡附近壁面将承受一定的交变载荷作用。  相似文献   

11.
Evolution and decay of pressure waves of moderate amplitude in a vertical shock tube filled by a gas–liquid medium with a nonuniform (stepwise) distribution of bubbles over the tube cross section are studied experimentally. The gas–liquid layer has the form of a ring located near the tube wall or the form of a gas–liquid column located in the center of the tube. It is shown that the nonuniformity of bubble distribution over the tube cross section increases the attenuation rate of pressure waves.  相似文献   

12.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

13.
The specific features of pressure wave dynamics in a fluid containing a bubble zone are considered. It is found that for nonlinear waves the shielding effect of the bubble zone, typical of acoustic waves, is less pronounced. In some cases, due to the nonlinear effects and the radial inertia of the bubbly fluid [1], the bubble zone may result in a certain increase in the original-signal amplitude. It is shown that when a bubble screen is located near a solid surface, by choosing an appropriate bubble radius and volume fraction, it is possible to achieve (i) the absence of a reflected signal and (ii) substantial damping of the wave action on the wall.  相似文献   

14.
Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (∼10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (∼100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000–2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.  相似文献   

15.
The axisymmetric vibrations of an ideal incompressible liquid column in a rigid circular cylindrical vessel with a spherical gas bubble pulsating near the position of dynamic equilibrium are considered. The boundary-value problem for the liquid velocity potential and the equations for the vibrations of the gas bubble are solved under the conditions on the free surface, sidewall, and the boundary of the gas body. For the case of small amplitudes, the resonance frequencies of the system are determined, and the pressure field in the liquid column is constructed. The results are compared with data known for the gas-accumulation model, data obtained without allowance for the boundedness of the liquid, and experimental data. National Technical University (KPI), Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 36, No. 7, pp. 74–80, July, 2000.  相似文献   

16.
壁面处气泡在静止流场和高速水流中溃灭过程的计算仿真   总被引:1,自引:0,他引:1  
罗经  李健  董光能 《摩擦学学报》2007,27(6):562-566
通过数值仿真计算,模拟近壁面以及附壁面气泡在静止流场和高速水流中的溃灭过程,研究气蚀作用机理.结果表明:气泡与壁面的距离和水流的速度影响其溃灭时间;附壁面气泡在高速水流中完全溃灭的时间最短,而在静止流场中最长,远离壁面将增加气泡的不稳定性;当气泡距离壁面一定距离溃灭时,射流不能直接作用于壁面,壁面承受冲击波的最大压力远小于气泡溃灭中心的压力;当气泡溃灭中心在壁面时,射流直接作用于壁面产生微小而严重的点破坏,而冲击波则使材料产生交变应力,造成环形破坏;当气泡在高速水流中溃灭时将产生逆流斜向射流,这可能是水力机械过流部件产生鱼鳞坑和波纹状破坏的主要原因.  相似文献   

17.
A spherically symmetric problem of oscillations of a single gas bubble at the center of a spherical flask filled with a compressible liquid under the action of pressure oscillations on the flask wall is considered. A system of differential-difference equations is obtained that extends the Rayleigh-Plesset equation to the case of a compressible liquid and takes into account the pressure-wave reflection from the bubble and the flask wall. A linear analysis of solutions of this system of equations is performed for the case of harmonic oscillations of the bubble. Nonlinear resonance oscillations and nearly resonance nonharmonic oscillations of the bubble caused by harmonic pressure oscillations on the flask wall are analyzed. Ufa Scientific Center, Russian Academy of Sciences, Ufa 450000. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 111–118, March–April, 1999.  相似文献   

18.
The enhancement of bubble rising velocity was experimentally investigated by mechanically applying an oscillating pressure to a single small air bubble (e.g., 1 mm3) in a viscoelastic fluid. For shear-thinning fluids, the cyclic change in bubble diameter induced by the oscillating pressure generates a continuous strong local flow near the bubble surface. Consequently, the apparent liquid viscosity is reduced and the bubble rising velocity increases by 400 times or more compared to the case without oscillating pressure. However, for a Newtonian fluid, almost no effect was observed with oscillating pressure. Time-series data of the longitudinal and horizontal bubble diameters were obtained experimentally using a stroboscope and a video system, and these data were used to estimate the local shear rate and the local shear viscosity. The increase in bubble rising velocity estimated from the shear viscosity behavior agreed well with the experimental data. Additionally, a periodic change in the bubble shape from a sphere at the maximum bubble size to a cusped shape at the minimum bubble size was observed under strong oscillatory pressure.  相似文献   

19.
Based on the bubble dynamic theory and the compressible two-phase flow solver of the open source software Open FOAM, a numerical simulation study is carried out on the interactions of bubble clusters in a closed volume. The bubble dynamics and interactions of a single bubble, two bubbles, and four bubbles are investigated under the working conditions without and with the presence of a free surface. Through a parametric study, the qualitative patterns of the variations of the bubble collapse period,the volume compressibility, the bubble pressure peak value, and the breakdown, fusion,and separation phenomena with the parameters such as the bubble pressure, the radius size, the bubble spacing, and the distance from the free surface are obtained. The main factors affecting the bubble morphology and the dynamic characteristics are summarized from numerous parameter experiments. It is shown that, in the absence of a free surface,the main factors are the relative size of the bubbles, the pressure of the liquid, and the pressure differences among the bubbles, while in the presence of a free surface, the main factor is the pressure of the liquid between the upper surface of the bubble and the free surface.  相似文献   

20.
气泡与弹性边界的相互作用研究   总被引:1,自引:0,他引:1  
从气泡与弹性边界相互作用基本现象入手, 基于势流理论, 建立气泡与弹性边界相互作用的数值模型, 计及浮力与表面张力, 模拟弹性介质附近单个气泡的动态特性, 通过气泡周围压力场的分布来讨论蘑菇状气泡的成因, 数值结果与已有实验结果吻合良好. 讨论两个气泡与弹性边界的相互作用, 并通过与Robinson 和Blake的实验结果对比, 验证数值模型的正确性. 数值模拟发现, 浮力、弹性系数和密度比是影响气泡动态特性的重要特征参数.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号