首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bismuth‐coated electrode is known to be prone to errors caused by copper(II). This study investigates copper(II) interference at bismuth film electrode for the detection of lead(II) and cadmium(II). It was conducted using glassy carbon electrode, while the bismuth film was plated in situ simultaneously with the target metal ions at ? 1200 mV. Copper(II) presented in solution significantly reduced the sensitivity of the electrode, for example there was an approximately 70 % and 90 % decrease in peak signals for lead(II) and cadmium(II), respectively, at a 10‐fold molar excess of copper(II). The decrease in sensitivity was ascribed to the competition between copper and bismuth or the metal ions for surface active sites. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) analysis suggested a large decrease in the amount of bismuth nanoparticles formed on the electrode surface in the presence of copper(II) occurred, validating the competition between copper and bismuth ions for surface active sites. Recovery of the stripping signal of lead(II) and cadmium(II) was obtained by adding ferrocyanide ion to the solution. Finally, the proposed method was successfully applied to determine lead(II) and cadmium(II) in water samples and the method was validated by ICP‐MS technique.  相似文献   

2.
Kuchekar SR  Chavan MB 《Talanta》1988,35(5):357-360
Extraction of gallium(III), indium(III) and thallium(III) with n-octylaniline in chloroform at various concentrations of hydrogen halide acids (HCl, HBr, HI) has been studied and a scheme for their separation proposed. The procedure can be successfully applied to the separation and determination of gallium in presence of mercury, bismuth, manganese, zinc and lead; indium in presence of bismuth, antimony, lead, mercury, cadmium and zinc; and thallium in presence of mercury, cadmium, manganese, aluminium, tin and antimony. The advantage of the method is that the reagent can be recovered for reuse. The method is simple, rapid, and effects clear-cut separation.  相似文献   

3.
Svancara I  Vytras K  Hua C  Smyth MR 《Talanta》1992,39(4):391-396
The determination of mercury(II) ions can be achieved by monitoring the decrease in the oxidation peak of the tetraphenylborate ion in the presence of this metal ion at a carbon paste electrode. The reaction between mercury(II) and the tetraphenylborate ion results in the formation of diphenylmercury, thus providing the method with good selectivity over other metal ions. Using anodic stripping voltammetry in a neutral electrolyte, a linear dependence of the decrease of peak height was observed on increasing the mercury(II) concentration in the range 1 x 10(-6)-8 x 10(-9)M mercury(II). Zinc(II), cadmium(II), lead(II), nickel(II), cobalt(II), tin(II), potassium(I) and ammonium(I) ions did not interfere at a 1000-fold concentration excess. Iron(III) and chromium(III) did not interfere at a 250-fold and 50-fold concentration excess, respectively. Following masking procedures, copper(II), bismuth(III) and silver(I) did not interfere at a 100-fold concentration excess. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

4.
A highly sensitive and simple electroanalytical methodology is presented using an in-situ bismuth film modified edge plane pyrolytic graphite electrode (BiF-EPPGE) which is exemplified with the simultaneous determination of cadmium(II) and lead(II). Square-wave anodic stripping voltammetry is utilised with the effects of several experimental variables studied. Simultaneous additions of cadmium(II) and lead(II) were investigated where two linear ranges between 0.1-100 and 0.1-300 microg/L and also detection limits of 0.062 and 0.084 microg/L were obtained, respectively. The method was then successfully applied to the simultaneous determination of cadmium(II) and lead(II) in spiked river water, where recoveries of 100.5 and 98% were obtained, respectively. This electroanalytical protocol using edge plane pyrolytic graphite electrodes is one of the simplest methodologies to date using non-mercury based electrodes and is simpler and cheaper than alternatives such as carbon nanotube electrode arrays, suggesting the use of edge plane pyrolytic graphite electrode for routine sensing.  相似文献   

5.
Budevsky O  Russeva E  Mesrob B 《Talanta》1966,13(2):277-281
Dithiocarbaminoacetic acid (TCA) forms very stable, water soluble complexes with a number of metal ions and is a suitable masking agent in complexometry. TCA masks from EDTA and complexometric indicators at pH 2-6 the following elements: bismuth(III), indium(III), thallium(III), cadmium(II), lead(II), mercury(II) and copper(II), thus making possible the complexometric determination of other elements in their presence.  相似文献   

6.
A technique for determination of mercury is described; it is based on electrolytic reduction of Hg(II) ion on a graphite cathode, the trapping of mercury vapor and its volatilization into a quartz tube aligned in the optical path of an atomic absorption spectrometer. The electrochemical cell consisted of a graphite cathode and an anode operating with constant direct current for the production of mercury atoms. A pre-activated graphite rod was used as the cathode material. The optimum conditions for electrochemical generation of mercury cold vapor (the electrolysis time and current, the flow rate, the type of electrode and electrolyte) were investigated. The characteristic electrochemical data with chemical cold vapor using NaBH4-acid were compared. The presence of cadmium(II), arsenic(III), antimony(III), selenium(IV), bismuth(III), silver(I), lead(II), lithium(I), sodium(I) and potassium(I) showed interference effects which were eliminated by suitable separation techniques. The calibration curve is linear over the range of 5-90 ng ml(-1) mercury(II). The detection limit is 2 ng ml(-1) of Hg(II) and the RSD is 2.5% (n = 10) for 40 ng ml(-1). The accuracy and recovery of the method were investigated by analyzing spiked tap water and river water.  相似文献   

7.
崔春国 《化学学报》1983,41(10):927-933
A method of simultaneous determination of copper (II), lead (II) and cadmium (II) in sulphuric acid-iocide ion medium was established by derivative anodic stripping voltammetry (DASV) on the gold electrode. The peak theights of lead and cadmium were increased by enhancement effect of iodide ion and the peaks of bismuth and copper were well formed and completely resolved on gold electrode in the presence of iodide ion, therefore peak of copper is not affected by bismuth. The sensitivities for copper, lead and cadmium were very high and their peak potentials in the stripping voltammogram were +0.25, -0.2 and -0.27 volt, respectively. The dependence of peak height of these elemets on their concentrations was linear. The detection limits for copper, lead and cadmium were 0.2 0.2 and 0.05 ppb, respectively. We have further studied the electrode process by means of triangle cyclic voltammetry and proved that he electrode reaction of copper is reversible, and that the reversibility of electrode reactions of lead and cadmium is not good.  相似文献   

8.
Analytical procedures for the determination of zinc(II), cadmium (II), lead(II) and copper(II) in sea water by potentiometric stripping analysis are described. The results are compared with those obtained by a combined solvent extraction-atomic absorption method both in the laboratory and on-board ship. The detection limits for zinc, cadmium, lead and copper are 0.03, 0.03, 0.01 and 0.02 μg l-1, respectively, for a total analysis time of about 75 min. A very thin mercury film is useful in the determination of lead and copper.  相似文献   

9.
New procedures of potentiometric stripping analysis can be based on the use of antimony film electrodes and antimony(III) salts. In this paper, antimony films are generated onto carbon paste electrodes in situ and after electrolytic preconcentration of the metals to be determined, the excess antimony(III) serves as a chemical oxidant. Moreover in acidic solutions containing halide ions, the oxidation ability of antimony(III) is adequately limited because of formation of its corresponding halide complexes. Compared with similar total substitution of traditionally used mercury(II) by bismuth(III), the use of antimony(III) offers higher sensitivity in detection of heavy metals, namely, cadmium and lead.  相似文献   

10.
Budesinsky BW  Sagat M 《Talanta》1973,20(2):228-232
The overall stability constants of electroneutral dithizonates of bismuth, cadmium, cobalt(II), copper(II), iron(II), lead(II), manganese(II), mercury(II), nickel, palladium(II), silver, tin(II) and zinc were determined by means of stoichiometric dilution in aqueous solution stabilized by hydroxylamine hydrochloride, at pH 5.50-10.02. Stability constants of complexes ML of bivalent metals were determined under similar conditions but with an excess of metal.  相似文献   

11.
The determination of lead, copper and cadmium by anodic stripping voltammetry at a wax-impregnated graphite electrode, pre-plated with mercury, has been investigated. Electrode preparation and cell design are discussed, and the effects of mercury loading and sample pH on electrode sensitivity are described. Detection limits and precision on aqueous samples are reported. Calibration graphs are linear for lead and cadmium, but non-linear for low concentrations of copper. The depression of peak current and shift of peak potential for copper in chloride media are described and an explanation is proposed. Precision and recovery of metal additions are reported for digested samples of whole blood.  相似文献   

12.
A new procedure for the determination of mercury(II), copper(II), lead(II), cadmium(II) and zinc(II) traces in food matrices by square wave anodic stripping voltammetry and standard addition method is proposed. A rapid, inexpensive and multi-analyte analytical method suitable for food safety control is provided. Comestible vegetables were chosen as samples. A two-step, sequential determination was defined, employing two working electrodes: a gold electrode (GE) for mercury(II) and copper(II), and subsequently a hanging mercury drop electrode (HMDE) for copper(II), lead(II), cadmium(II) and zinc(II). No sample pre-treatment was needed. Spinach leaves, tomato leaves and apple leaves were employed as standard reference materials to optimize and defined the analytical procedure. The new method shows good selectivity, sensitivity, detectability and accuracy. A critical comparison with spectroscopic measurements is discussed. Spinach, lettuce and tomato samples sold on the market were analysed as real samples. Lead(II) and cadmium(II) concentration exceeded the relevant legal limits.   相似文献   

13.
《Analytical letters》2012,45(6):1223-1234
Abstract

The stripping potentiometric determination of lead, cadmium and copper with mercury film glassy-carbon electrodes coated with a Nafion membrane was investigated. The mercury film was plated using either mercury(II) acetate encapsulated within the Nafion membrane or a mercury(II) solution. Dissolved dioxygen was used as the stripping agent. The electrodes showed promising properties, particularly robustness and response repeatability. A linear dependence of the stripping time on concentration was found in the μg l?1 concentration range (s.d. of intercept ≤ 0.3 μg l?1, r.s.d. of slope ≤ 1%, for both lead and cadmium).  相似文献   

14.
We present a simplified approach for the trace screening of toxic heavy metals utilizing bismuth oxide screen printed electrodes. The use of bismuth oxide instead of toxic mercury films facilitates the reliable sensing of lead(II), cadmium(II) and zinc(II). A linear range over 5 to 150 μg L?1 with detection limits of 2.5 and 5 μg L?1 are readily observed for cadmium and lead in 0.1 M HCl, respectively. Conducting a simultaneous multi‐elemental voltammetric detection of zinc, cadmium and lead in a higher pH medium (0.1 M sodium acetate solution) exhibited a linear range between 10 and 150 μg L?1 with detection limits of 5, 10 and 30 μg L?1 for cadmium, lead and zinc respectively. The sensor is greatly simplified over those recently reported such as bismuth nanoparticle modified electrodes and bismuth film coated screen printed electrodes. The scope of applications of this sensor with the inherent advances in electroanalysis coupled with the negliable toxicity of bismuth is extensive allowing high throughput electroanalysis.  相似文献   

15.
Saad B  Sultan SM 《Talanta》1995,42(10):1349-1354
A reasonably sensitive and highly selective spectrophotometric method for the determination of mercury(II) is proposed. The method is based on the extraction of the ion-associate formed by a mercury(II) thiacrown ether cationic complex with Bromocresol Green as the anionic counter-ion using chloroform as the extracting solvent. The effect of thiacrown ethers of different cavity sizes, namely 1,4,7,10,13-pentathiacyclopentadecane (PTP) and 1,4,7,10,13,16-hexathiacyclooctadecane (HTO), the thiacrown ether concentration, the extracting solvent, the bromocresol green concentration and the aqueous phase pH on the extraction were investigated. Measurement of the absorbance at the lambda(max) (420 nm) of the extracted ion-associate reveals that Beer's law is obeyed over 0.5-12.0 ppm mercury(II) for both ligands. Slight interference from copper(II) and cadmium(II) is exhibited by the PTP ligand, while HTO is negligibly affected by these metal ions. Strong interference from silver(I) is evident for both ligands while alkali, alkaline earth and other transition metals tested posed negligible interference. Analysis of mercury in synthetic complex mixtures was satisfactory.  相似文献   

16.
Conditions for the formation of a stable and reproducible thin-film mercury microdrop cover on electrodes from carbon glass ceramics, carbon glass, and graphite are proposed. The influence of various factors on the parameters of signals from cadmium (II), lead (II), and copper (II) is studied by stripping voltammetry with linear, differential-pulse, sinusoidal, and square-wave potential sweep. The parameters of the stripping voltammetric experiment are optimized. The value of RSD in determining the specified modeling trace components did not exceed 15%. Approaches to the multicomponent stripping voltammetric analysis of waters are proposed.  相似文献   

17.
We are presenting a strategy for the fabrication of disposable screen-printed electrodes modified with mercury nano-droplets and capable of sensing heavy metal ions. They were prepared by coating electrodes with a mixture of multi-walled carbon nanotubes and chitosan, this followed by adsorption of mercury. The resulting sensor was characterized by cyclic voltammetry and impedance spectroscopy. Also the effects caused by adsorption of mercury were investigated. It is shown that square wave anodic stripping voltammetry enables simultaneous determination of cadmium(II), lead(II) and copper(II), for which detection limits of 12, 23 and 20 nM, respectively, are found. Relative standard deviations for ten determinations at 0.6 µM concentrations of these ions are in the range of 3.0 to 5.7%. The applicability was tested by analyzing river water and showed recoveries between 94.1 and 104.6%, thus demonstrating its utility for in-field monitoring of these heavy metal ions.  相似文献   

18.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

19.
The use of a thin mercury-film wax-impregnated graphite electrode for the simultaneous determination of cadmium, lead and zinc in an acetate buffer by differential pulse anodic stripping voltammetry is described. Optimal instrumental parameters for maximum resolution and sensitivity for simultaneous analysis of these three elements in natural waters are discussed. The interference of copper with the determination of zinc is investigated in detail. An optimal mercury film thickness for this electrode is suggested.  相似文献   

20.
Summary A rapid, reliable and accurate method for the determination of trivalent chromium, based on back titrating excess EDTA solutions in the presence of chromium versenate, with mercuric nitrate in alkaline media is given. By its aid amounts of chromium in the order of 50 micro- to 15 milligrams can be determined with fair accuracy. The method is applied for analysis of binary mixtures of chromium with thorium, copper(II), bismuth or mercury(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号