首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Y  Pradhan NK  Foley R  Low GK 《Talanta》2002,57(6):1143-1153
A new method for determining ultra-trace levels of hexavalent chromium in ambient air has been developed. The method involves a 24-h sampling of air into potassium hydroxide solution, followed by silica gel column separation of chromium (VI), then preconcentration by complexation and solvent extraction. The chromium (VI) complex was dissolved in nitric acid. The resultant chromium ions were determined by inductively coupled plasma mass spectrometry (ICP–MS) using a dynamic reaction cell (DRC) with ammonia as the reactive gas to reduce polyatomic interferences. The interconversion of chromium in potassium hydroxide solution and air sample matrix were investigated under ambient conditions. It was found that there was no conversion of chromium (VI) into chromium (III) species. However, it was observed that some chromium (III) species were converted into chromium (VI) species. For a KOH solution containing 100 μg l−1 of chromium (III) species, the rate of conversion was found to be 3% after 24 h exposure, 8% after 48 h, 10% after 72 h and no further conversion was observed thereafter. However, in a solution containing air sample matrix, 9.3% of chromium (III) converted to chromium (VI) within 6 h, and during the course of a 11-day exposure period, 13% (range 8–17%) of chromium (III) converted to chromium (VI). The method detection limit (MDL) for chromium (VI) in potassium hydroxide solution (0.025 M) was found to be 2×10−2 μg l−1. This is equivalent to 0.2 ng m−3 (for 23 m3 air sampled into 200 ml of KOH solution over a 24-h period). The recovery of spiked chromium (VI) from solutions containing air sample matrix was 95±9% (n=8). Matrix related interferences were estimated to be less than 10% based on recovery studies. The concentration of airborne chromium (VI) in Sydney residential areas was found to be less than 0.2 ng m−3, however, in industrial areas the concentrations ranged from 0.2 to 1.3 ng m−3 using this analytical procedure.  相似文献   

2.
A procedure was developed for determining chromium(VI) in the soil organic fraction; it consisted of three steps: the preparation of a soil solution; the isolation and separation of chromium(VI) and chromium(III); and the determination of chromium(VI). Soil solutions were prepared by leaching soil samples with a Na4P2O7 solution (the Rudd method). Chromium(VI) was extracted from the soil solution with a solution of sodium diethyldithiocarbamate in n-amyl alcohol; the conditions of the extraction and separation of chromium(VI) and chromium(III) were optimized. Chromium(VI) in solutions was determined after back extraction by spectrophotometry with diphenylcarbazide or by flame atomic absorption spectrometry. The procedure was validated using a reference soil sample, and the material balance of chromium in the systems under study was calculated.  相似文献   

3.
Chromium(III) is a sea water at the nanomole level was selectively collected using a column packed with macroporous polystyrene-divinylbenzene resin after complexation with quinolin-8-ol. Complex formation between ligand and inert hydrated chromium(III) ions was achieved by heating a sample solution containing a small amount of quinolin-8-ol for a short time in a microwave oven. Chromium(VI) was collected by a similar method after reducing it to chromium(III) with hydroxylamine. The effect of co-existing organic materials on the collection of chromium(III) and chromium(VI) was examined. This method was successfully applied to the determination of chromium(III) and chromium(VI) in sea water by graphite furnace AAS.  相似文献   

4.
A rapid, sensitive and selective method is described for the determination of chromium(VI) in presence of 100-fold amounts of chromium(III) by flame atomic absorption spectrometry (FAAS) in conjunction with coprecipitative preconcentration of its ethyl xanthate complex onto naphthalene. The solid mixture consisting of the chromium(VI) complex together with naphthalene is dissolved in 8.0 ml of dimethyl formamide (DMF) and chromium(VI) content was established by FAAS. Calibration graphs were rectilinear over the chromium(VI) concentration in the range 0-200 μg l−1. Five replicate determinations of 20 μg of chromium(VI) present in 1.0 l of sample solution gave a relative standard deviation of 3.1%. The detection limit corresponding to three times the standard deviation of the blank was found to be 0.5 μg l−1. The developed procedure has been successfully utilized for the estimation of chromium(VI), chromium(total) (after oxidation with bromate) and chromium(III) (by subtracting chromium(VI) content from chromium(total) value contents of several tannery industries.  相似文献   

5.
《Analytical letters》2012,45(14):2258-2271
A sensitive and selective method was developed for the speciation of chromium(III) and chromium(VI) in environmental samples based on membrane filtration and determination by flame atomic absorption spectrometry. Chromium(III) reacts with cochineal red A, yielding a complex that is adsorbed on a cellulose acetate membrane filter, whereas chromium(VI) remains in aqueous solution, permitting separation. After reduction of chromium(VI) to chromium(III) with hydroxylamine hydrochloride, the total concentration of chromium was determined, and the concentration of chromium(VI) was calculated by subtraction. The pH, amount of cochineal red A, and sample volume were optimized on the basis of the recovery of Cr(III). The influence of matrix ions was also investigated. The preconcentration factor was 94. The detection limit (3 sigma) for Cr(III) was 1.4 micrograms per liter. The method was validated using environmental certified reference materials. The method was successfully employed for the speciation of chromium in wastewater and lake water.  相似文献   

6.
《Analytical letters》2012,45(11):1662-1677
Abstract

To measure the different activity of chromium(VI) and chromium(III) in soil samples, chromium(VI) and total chromium (CrVI + CrIII) was extracted by KCl extracting agent and alkali fusion, respectively. Cloud point extraction (CPE) for speciation determination of chromium with double-slotted quartz tube atom trap–flame atomic absorption spectrometry (STAT-FAAS) was developed. Preconcentration of chromium(VI) and total chromium in different pH solutions was achieved by CPE, with ammonium pyrrolidine dithiocarbamate (APDC) as the chelating agent and Triton X-114 as the cloud point extractant. The conditions of CPE and determination were studied. Under the optimal conditions, the enrichment factor was 50 for chromium from the initial 100-mL sample solution to the final 2-mL determined solution. Compared to the FAAS method, the sensitivity was improved seven-fold for chromium by the STAT-FAAS method. The limit of detection was 0.082 µg/L for chromium.  相似文献   

7.
Dibenzyldithiocarbamic acid (DBDC) exhibits the ability to speciate between chromium(VI) and chromium(III), since only the chromium(VI) will form complexes with DBDC. The complex is then extracted into an organic solvent and assayed using an ultraviolet-visible (UV-VIS) spectrophotometer at 498.8 nm. Using 250 ml of aqueous sample detection limits less than 1 ng/ml are possible, while the linear range extends to 500 gmg/ml when working at 498.8 nm. Oxidation of the chromium(III) to chromium (VI) using cerium (IV) enables the determination of total chromium and subsequently the chromium (III) in solution. Evaluation of the method with a standard reference material produced only 4.81 part per thousand error in the determination of chromium(VI).  相似文献   

8.
A new potentiometric flow titration has been proposed based on the relationship of the flow rates between titrant and sample solutions. A sample solution is pumped at a constant flow rate. The flow rate of the titrant solution is gradually increased at regular time intervals and a flow rate for the titrant solution in the vicinity of the equivalence point is obtained. The concentration of the sample is calculated by C(S) (mol l(-1))=(R(T) (ml min(-1))xC(T) (mol l(-1)))/R(S) (ml min(-1)), where C(S), C(T), R(S), and R(T) denote the unknown sample concentration, titrant concentration in the reservoir, the flow rate of the sample solution which is a constant rate, and the flow rate of the titrant solution at an inflection point, respectively. The potentiometric flow titration of iron(II) with cerium(IV) and of chromium(VI) with iron(II) has been presented. The titration time of the proposed method is about 10 min per sample. An R.S.D. of the method is 0.77% for seven determinations of 1x10(-3) mol l(-1) iron(II). Similarly, the flow titration of chromium(VI) with iron(II) is carried out over the range 1x10(-4)-1x10(-3) mol l(-1) chromium(VI) and is successfully applied to the determination of chromium in high carbon ferrochromium.  相似文献   

9.
There is an increasing need to know the concentrations of chromium(III) and (VI) separately rather than only the total chromium content. A method is described for accomplishing this very quickly using only low-cost, portable equipment. Two small, resin-loaded extraction disks are placed one on top of the other in a plastic holder. Then a syringe containing the aqueous sample is attached to the holder and the sample is pushed through the disks. In a matter of seconds, all of the chromium(VI) is retained on the top anion-exchange disk and chromium(III) is extracted by the second cation-exchange disk. The concentrations on each disk are several hundredfold higher than they were in the original sample. The amounts of chromium(III) and (VI) extracted are measured directly on the surface of the respective disks by diffuse reflectance spectroscopy (DRS). Despite the low molar absorptivity of chromium(III) in aqueous solution, the concentration on the upper most layer on the extraction disk is high enough to permit the determination of chromium(III) in samples at the low mg/L range. Chromium(VI) can also be determined at low to sub-mg/L concentrations. A study of the cation-exchange disks was undertaken to compare the performance characteristics of disks containing sulfonated resins and those with iminodiacetate functionality. In addition, data are presented to show the effects of heating the iminodiacetate disks after the initial extraction. The disks were heated in hot water for 15-30 min to complete the slow complexation reaction on the surface.  相似文献   

10.
《Analytical letters》2012,45(11):2007-2014
Abstract

A simple and inexpensive method for determining chromium (VI) in drinking water by spectrophotometry after preconcentration with sodium dodecyl sulphate (SDS) coated alumina column is described. Chromium(VI) is reacted with diphenylcarbazide (DPC) and the Cr-DPC complex is quantitatively adsorbed onto a SDS coated alumina column from 800 ml of sample solution. The complex is then eluted with a 8 ml mixture of methanol, acetone and hydrochloric acid and determined by spectrophotometry. Total chromium can be determined after oxidation of chromium (III) to chromium (VI) by KMnO4. The relative standard deviation (10 replicate analyses) at the 10 μg l?1 of chromium (VI) and 10 μg l?1 of total chromium were 3.5% and 3.4% and corresponding limits of detection (based on 3 σ) were 0.040 μg l?1 and 0.033 μg l?1, respectively.  相似文献   

11.
Valence-selective species determination of chromium in environmental and biological material presents intricacies primarily due to the complex nature of the samples and the instability of the oxidation states of chromium. In particular organic matter ubiquitously present in environmental samples introduces the risk of chromium(VI) reduction during analysis which takes place preferably in acidic solution. Also chromium(III) oxidation may occur in alkaline medium. Hence analytical methods should be adequately adapted to the reliable determination of chromium(VI) in blood, natural water, effluents, sediments and soil. It can be shown that polarography is most effectually suitable to the determination of chromium(VI) compounds. Chromium(VI) is electrochemically active over the entire pH range, so that medium pH can be selected for measuring, thus protecting samples most effectively from undergoing redox reactions during the analytical procedure. Other established methods such as spectrophotometry or valence-specific extraction are more crucial, because these generally require acidic medium. In some cases sample pre-treatment can be employed to eliminate reductants prior to final measurement. Very few methods are available to selectively measure chromium(III). Indirect determination is therefore preferred. Optimum conditions for the determination of total chromium by AAS are shortly outlined.  相似文献   

12.
A simple GF-AAS method for speciation analysis of chromium in mineral waters and salinas was developed. Cr(VI) species were separated from Cr(III) by solid-phase extraction with APDC (ammonium pyrrolidinedithiocarbamate). The APDC complexes were formed in the sample solution under proper conditions, adsorbed on Diaion HP-2MG resin and the resin was separated from the sample. After elution with concentrated nitric acid Cr(VI) was determined by GF-AAS. Total chromium was determined by GF-AAS directly in the sample and Cr(III) concentration was calculated as the difference between those results.

The detection limit of the method defined as 3 s of background variation was 0.03 μg l−1 for Cr(VI) and 0.3 μg l−1 for total chromium. RSD for Cr(VI) determination at the concentration of 0.14 μg l−1 was 9%, and for total chromium at the concentration of 5.6 μg l−1 was 5%. The recovery of Cr(VI) was in the range of 94–100%, dependently on type of the sample.

The investigation of recovery of the spiked Cr(VI) showed that at concentration levels near 1 μg l−1 and lower recovery may be reduced significantly even by pure reagents that seem to be free from any reductants.  相似文献   


13.
We have considered the possibility of the sorption-spectrometric determination of molybdenum(VI) with phenylfluorone and chromium(VI) with diphenylcarbazide from a single sample by consecutive sorption from different media onto fiber materials filled with an AV-17 anion exchanger. The dependences of analytical signals of molybdenum and chromium on the sorption conditions (pH of the initial solution, NaCl concentration, sizes of the support disc, agitation time) have been studied in the batch mode. The conditions of analytical signal registration have been determined and the analytical ranges have been established (0.01–0.06 μg/mL for Cr and 0.02–0.2 μg/mL for Mo). It has been demonstrated that molybdenum and chromium can be determined at their ratios from 1: 1 to 5: 1 from a single sample after chromium sorption from 0.1 M HCl and molybdenum sorption at pH 4 by diffuse-reflection spectroscopy or visual test. The selectivity of molybdenum and chromium determination in the presence of interfering ions has been studied.  相似文献   

14.
A method is described for the determination of Cr(VI) and total chromium by FAAS. Cr(VI) is separated from Cr(III) by adsorption on melamine-formaldehyde resin. After elution of Cr(VI) with 0.1 mol/l NaAc solution, it is analysed by FAAS. Total chromium is determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with hydrogen peroxide, total Cr(VI) is concentrated as above. If the total concentration of chromium is sufficient, the determination can be directly made by FAAS. Cr(III) can then be calculated by subtracting Cr(VI) from the total Cr. This method was successfully applied to the determination of chromium in lake water.  相似文献   

15.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

16.
Mandiwana KL 《Talanta》2008,74(4):736-740
A method has been developed that leaches Cr(VI) selectively from soil samples. Hexavalent chromium was leached completely from soil with 0.01molL(-1) Na(3)PO(4). This was achieved by boiling the soil-reagent solution mixture for a period of 5min. The leached Cr(VI) was then quantified by electrothermal atomic absorption spectrometry (ET-AAS) after filtration of the sample solutions through Hydrophilic Millipore PVDF 0.45microm filter. Statistical evaluations indicated that the new developed method is reliable since neither its comparison with the established method nor the comparison of the sum of the concentrations of chromium species to that of the total concentration of chromium show any difference at 95% level of confidence. The spiking of soil samples with Cr(III) standards before pretreatment show that Cr(III) was not oxidized to Cr(VI) during leaching as the Cr(VI) content never increased. The detection limit established was 0.07microg g(-1), which is an improvement to that of the US EPA method 3060A by a factor of more than 500. The maximum concentrations of Cr(VI) found in soil samples collected around the new chromium mine was 8.0microg g(-1) and falls within acceptable level of 15microg g(-1) in accordance with the Italian Guidelines.  相似文献   

17.
Summary Routine analysis of brine for trace metals is important for safe and economical production in the alkali chloride electrolysis. As opposed to many spectroscopic techniques, trace metal determination by adsorptive stripping voltammetry (AdSV) is shown to be performed directly in brine. With minimal sample preparation chromium(VI), iron(III), nickel(II), cobalt(II), titanum(IV), manganese(II), molybdenum(VI) and vanadium(V) can be determined within minutes. The influence of parameters such as pH-value, supporting electrolyte solution, concentration of complexing reagents and possible interferents are investigated for optimal experimental conditions. Minimum detection limits are less than 5 ng/g for all trace metals except 1 ng/g for chromium(VI), cobalt(II) and molybdenium(VI) for 40 s adsorption periods with precisions of better than 7%. AdSV with linear or differential pulse scan is discussed.  相似文献   

18.
The extraction of chromium(VI) from aqueous saline solutions (NaNO3) using a trioctylamine solution in toluene was studied in order to determine chromium(VI) in soil samples by atomic absorption spectrometry. It was found that the quantitative recovery of chromium(VI) was attained after extraction with the 0.1 M extractant solution (pH 1.5) for 15 min followed by-back extraction with 4 M HNO3. Chromium(III) was not extracted under these conditions  相似文献   

19.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

20.
A sensitive method for the simultaneous determination of chromium(III) (Cr3+) and chromium(VI) (CrO4(2-)) using in-capillary reaction, capillary electrophoresis (CE) separation and chemiluminescence (CL) detection was developed. The chemiluminescence reaction was based on luminol oxidation by hydrogen peroxide in basic aqueous solution catalyzed by Cr3+ ion followed by capillary electrophoresis separation. Based on in-capillary reduction, chromium(VI) can be reduced by acidic sodium hydrogensulfite to form chromium(III) while the sample is running through the capillary. Before the electrophoresis procedure, the sample (Cr3+ and CrO4(2-)), buffer and acidic sodium hydrogensulfite solution segments were injected in that order into the capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ ions migrate to the cathode, while CrO4(2-) ions, moving in the opposite direction toward the anode, react with acidic sodium hydrogensulfite which results in the formation of Cr3+ ions. Because of the migration time difference of both Cr3+ ions, Cr(III) and Cr(VI) could be separated. The running buffer was composed of 0.02 mol l(-1) acetate buffer (pH 4.7) with 1 x 10(-3) mol l(-1) EDTA. Parameters affecting CE-CL separation and detection, such as reductant (sodium hydrogensulfite) concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, were optimized. The limits of detection (LODs) of Cr(III) and Cr(VI) were 6 x 10(-13) and 8 x 10(-12) mol l(-1) (S/N=3), respectively. The mass LODs for Cr(III) and Cr(VI) were 1.2 x 10(-20) mol (12 zmol) and 3.8 x 10(-19) mol (380 zmol), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号