首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of complexes among the Curcumin, Fe(III) and Fe(II) was studied in aqueous media within the 5-11 pH range by means of UV-Vis spectrophotometry and cyclic voltammetry. When the reaction between the Curcumin and the ions present in basic media took place, the resulting spectra of the systems Curcumin-Fe(III) and Curcumin-Fe(II) presented a similar behaviour. The cyclic voltammograms in basic media indicated that a chemical reaction has taken place between the Curcumin and Fe(III) before that of the formation of complexes. Data processing with SQUAD permitted to calculate the formation constants of the complexes Curcumin-Fe(III), corresponding to the species FeCur (lob beta110 = 22.25 +/- 0.03) and FeCur(OH)- (log beta111 = 12.14 +/- 0.03), while for the complexes Curcumin-Fe(II) the corresponding formation constants of the species FeCur- (log beta110 = 9.20 +/- 0.04), FeHCur (log beta111 = 19.76 +/- 0.03), FeH2Cur+ (log beta112 = 28.11 +/- 0.02).  相似文献   

2.
Napoli A 《Talanta》1968,15(2):189-198
A potentiometric and spectrophotometric investigation on the formation of aluminium(III) complexes with dipicolinic (2,6-pyridinedicarboxylic) acid at 25 degrees in aqueous 0.5M NaClO(4) medium is reported. The values of the cumulative formation constants of the two acid species HL(-) and H(2)L are log ss(1) = 4.532 +/- 0.004 and log ss(2) = 6.624 +/- 0.006. At pH < 4 and in the investigated concentration range (0.242 C(m) 0.975 mM,3.16 C(l) 5.27 mM), aluminium(III) forms two mononuclear complexes, one positively charged, with a metal/ligand molar ratio of 1:1, and the other negatively charged, with a metal/ligand molar ratio of 1:2. The two methods of investigation have yielded the following values for the cumulative formation constants: log beta(1(pot)) = 4.87 +/- 0.02; log beta(2(pot)) = 8.32 +/- 0.02 log beta(1(sp)) = 4.85 +/- 0.03. A precipitate occurs at pH 5-6. A paper electrophoretic investigation and comparison with the behaviour of the well-known iron(III) complexes, supports these findings.  相似文献   

3.
A potentiometric and spectrophotometric investigation on the formation of zinc(II) complexes with Semi-Xylenol Orange (SXO or H(4)L) is reported. In an aqueous solution (mu = 0.1), three 1:1 complex species, MH(2)L, MHL(-), ML(2-), and a 1:2 complex, ML(6-)(2), seem to exist. In a strongly alkaline medium (above pH 12.5) the complexes may dissociate to give zinc hydroxide and L(4-). The formation of a hydroxy complex is not observed. The absorption maxima are at 445 nm (MH(2)L), 466 nm (MHL(-)) and 561 nm (ML(2-)), the molar absorptivities being 2.34 x 10(4), 2.42 x 10(4) and 3.14 x 10(4) 1.mole(-1) .cm(-1) respectively. The formation constants are (at 25 +/- 0.1 degrees ) log K(M)(ML) = 11.84, log K(M)(MHL) = 7.13, log K(M)(MH(2)L) = 2.70, log K(M)(ML(2)) = 16.60.  相似文献   

4.
Karadakov B  Kantcheva D  Nenova P 《Talanta》1968,15(6):525-534
The reaction between iron(III) and Methylthymol Blue (MTB or H(6)A) has been investigated by spectrophotometry. It has been established that iron(III) and MTB form two complexes with compositions iron(III): MTB = 1:1 and 1:2. The 1:1 complex is stable in acidic medium containing excess of iron, and the 1:2 complex is stable in slightly acidic or alkaline media containing excess of MTB. The absorption maxima are at 610 mmu (1:1) and 515 mmu (1:2), the molar absorptivities being 1.73 +/- 0.01 x 10(4) and 3.21 +/- 0.05 x 10(3) respectively. The nature of the two complexes at pH 6 and the stability constants have been determined: log beta(11) = 20.56 +/- 0.07, log beta(112) = 43.29 +/- 0.09, log beta(12) = 6.66 +/- 0.05.  相似文献   

5.
Karadakov BP  Venkova DI 《Talanta》1970,17(9):878-883
The reaction between bismuth(III) and nitrilotriacetic acid (NTA or H(3)X) has been investigated by ultraviolet spectrophotometry. It has been established that bismuth(III) and NTA form two complexes with compositions bismuth(III): NTA = 1:1 and 1:2. The absorption maxima are at 243 nm (1:1) and 271 nm (1:2), the molar absorptivities being 8.00 x 10(3) and 8.20 x 10(3) l.mole(-1).cm(-1) respectively. The stability constants (at mu = 1.0) are: log beta(BiX) = 17.53 +/- 0.06 and log beta(B)(2)(3-) = 26.56 +/- 0.07. The possibility of the analytical application of BiX is briefly discussed.  相似文献   

6.
The formation constants of dioxouranium(VI)-1,2,3-propanetricarboxylate [tricarballylate (3-), TCA] complexes were determined in NaCl aqueous solutions at 0 < or = I/mol L(-1) < or = 1.0 and t=25 degrees C, by potentiometry, ISE-[H+] glass electrode. The speciation model obtained at each ionic strength includes the following species: ML-, MLH0, ML2(4-) and ML2H3- (M = UO2(2+) and L = TCA). The dependence on ionic strength of protonation constants of 1,2,3-propanetricarboxylate and of the metal-ligand complexes was modeled by the SIT (Specific ion Interaction Theory) approach and by the Pitzer equations. The formation constants at infinite dilution are [for the generic equilibrium p UO22+ + q (L3-) + r H+ = (UO2(2+))p(L)qHr(2p-3q+r); betapqr]: log beta110 = 6.222 +/- 0.030, log beta111 = 11.251 +/- 0.009, log beta121 = 7.75 +/- 0.02, log beta121 = 14.33 +/- 0.06. The sequestering ability of 1,2,3-propanetricarboxylate towards UO2(2+) was quantified by using a sigmoid Boltzman type equation.  相似文献   

7.
The distribution equilibria of the complexes cadmium-cnha and cadmium-cnha-4-methylpyridine in the water-methyl isobutyl ketone system have been studied at 25 degrees , by using (109)Cd as a radiotracer to measure the metal distribution ratio. A very sensitive method for detection of (109)Cd, based on the use of a liquid scintillator, has been developed. From the graphical treatment of the equilibrium data, it has been deduced that CdL(2) is the complex extracted in the absence of 4-methylpyridine, and that the adduct CdL(2)B is extracted when the second ligand is present. This model has been checked by treating the data with the program LETAGROP-DISTR and the following equilibrium constants have been obtained: stability constants of CdL(2), log beta(1) = 2.82 +/- 0.14, log beta(2) = 5.981 +/- 0.004; distribution constant of CdL(2), log K(DC) = -0.49 +/- 0.01; adduct formation constant of CdL(2)B, log K(s) = 2.70 +/- 0.07.  相似文献   

8.
3-(5'-tetrazolylazo)-2,6-Diaminotoluene (TEADAT, H(3)L(2+)) forms stable 1:1 and 1:2 (metal:ligand) pink-red complexes (lambda(max) 506 and 536 nm) with palladium(II). The apparent molar absorptivity of 1:2 complex is 5.2 x 10(4) 1.mol(-1). cm(-1) at 536 nm. Equilibrium constants beta*(nl) for reactions PdCl(2-)(4) + nH(3)L(2+) right harpoon over left harpoonright harpoon over left harpoon PdCl(4-n) (H(2)L)(2n-2)(n) + n Cl(-) + n H(+) were determined: logbeta*(1) = 4.09 +/- 0.05, logbeta*(2) = 8.40 +/- 0.02, corresponding stability conditional constants of PdCl(3)(H(2)L) and PdCl(2)(H(2)L)(2+)(2) were log beta(1) = 19.03, log beta(2) = 26.74. The formation of complexes was rather slow but could be speeded up considerably by the catalytic effect of trace amounts of thiocyanate. Constant absorbance values were thus reached in 2-5 min. A rapid, sensitive and highly specific method for the determination of palladium(II) at pH 1.42 in 0.25M NACl has been worked out with a detection limit of 0.54 mug. Interference of precious and common metal ions have been studied and the method has been applied for the determination of palladium in Pd asbestos, oakay alloys and various catalysts and for the determination of palladium in precious metals.  相似文献   

9.
The formation of the sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin (H(2)tpp), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H(2)t(4-Clp)p), 5,10,15,20-tetramesitylporphyrin (H(2)tmp), and 2,3,7,8,12,13,17,18-octaethylporphyrin (H(2)oep) with the Cu(II) ion was spectrophotometrically confirmed in aqueous acetonitrile (AN), and the formation rates were determined as a function of the water concentration (C(W)). The decrease in the conditional first-order rate constants with the increasing C(W) was reproduced by taking into consideration the contribution of [Cu(H(2)O)(an)(5)](2+) in addition to [Cu(an)(6)](2+) to form the Cu(II)-SAT complexes. The second-order rate constants for the reaction of [Cu(an)(6)](2+) and [Cu(H(2)O)(an)(5)](2+) at 298 K were respectively determined as follows: (4.1 +/- 0.2) x 10(5) and (3.6 +/- 0.2) x 10(4) M(-1) s(-1) for H(2)tpp, (1.15 +/- 0.06) x 10(5) M(-1) s(-1) and negligible for H(2)t(4-Clp)p, and (4.8 +/- 0.3) x 10(3) and (1.3 +/- 0.3) x 10(2) M(-1) s(-1) for H(2)tmp. Since the reaction of H(2)oep was too fast to observe the reaction trace due to the dead time of 2 ms for the present stopped-flow technique, the rate constant was estimated to be greater than 1.5 x 10(6) M(-1) s(-1). According to the structure of the Cu(II)-SAT complexes determined by the fluorescent XAFS measurements, two pyrrolenine nitrogens of the meso-substituted porphyrins (H(2)tpp and H(2)tmp) bind to the Cu(II) ion with a Cu-N(pyr) distance of ca. 2.04 A, while those of the beta-pyrrole-substituted porphyrin (H(2)oep) coordinate with the corresponding bond distance of 1.97 A. The shorter distance of H(2)oep is ascribed to the flexibility of the porphyrin ring, and the much greater rate for the formation of the Cu(II)-SAT complex of H(2)oep than those for the meso-substituted porphyrins is interpreted as due to a small energetic loss at the porphyrin deformation step during the formation of the Cu(II)-SAT complex. The overall formation constants, beta(n), of [Cu(H(2)O)(n)()(an)(6)(-)(n)](2+) for the water addition in aqueous AN were spectrophotometrically determined at 298 K as follows: log(beta(1)/M(-1)) = 1.19 +/- 0.18, log(beta(2)/M(-2)) = 1.86 +/- 0.35, and log(beta(3)/M(-3)) = 2.12 +/- 0.57. The structure parameters around the Cu(II) ion in [Cu(H(2)O)(n)(an)(6-n)](2+) were determined using XAFS spectroscopy.  相似文献   

10.
The equilibria have been investigated at 25 degrees C in 3 M NaClO4 using potentiometry, glass and redox Fe3+/Fe2+ half-cells, and UV optical absorptiometry. The concentration of the reagents was chosen in the intervals: 10(-4) < or = [Fe(III)] < or = 5.10(-3) M, 0.01 < or = [SO4(2-)]tot < or = 0.65 M. The value of [H+] was kept at 0.1 M or more to reduce the hydrolysis of the Fe3+ ion to less than 1%. Auxiliary constants, corresponding to the formation of Fe(II)-sulfate complexes and to the association of H+ with SO4(2-) ions, were taken from previous determinations. The experimental data could be explained with the equilibria [formula: see text] Equilibrium constants at infinite dilution, log beta 101 degrees = 3.82 +/- 0.17, log beta 102 degrees = 5.75 +/- 0.17 and log beta 111 degrees = 3.68 +/- 0.35, have been evaluated by applying the specific interaction theory.  相似文献   

11.
Kamau P  Jordan RB 《Inorganic chemistry》2001,40(16):3879-3883
A simple spectrophotometric method for the evaluation of formation constants for aqueous copper(I) has been developed, based on the kinetics of reduction of Co(III)(NH(3))(5)X complexes. The method has been applied to the aqueous copper(I)-acetonitrile system to determine the successive formation constants beta(1), beta(2), and beta(3) as 4.3 x 10(2) M(-)(1), 1.0 x 10(4) M(-)(2), and 2.0 x 10(4) M(-)(3), respectively, in 0.14 M NaClO(4)/HClO(4) at 21 +/- 1 degrees C.  相似文献   

12.
EDTA forms stable complexes with plutonium that are integral to nuclear material processing, radionuclide decontamination, and the potentially enhanced transport of environmental contamination. To characterize the aqueous Pu(4+/3+)EDTA species formed under the wide range of conditions of these processes, potentiometry, spectrophotometry, and cyclic voltammetry were used to measure solution equilibria. The results reveal new EDTA and mixed-ligand complexes and provide more accurate stability constants for previously identified species. In acidic solution (pH < 4) and at 1:1 ligand to metal ratio, PuY (where Y4- is the tetra-anion of EDTA) is the predominant species, with an overall formation constant of log beta110 = 26.44. At higher pH, the hydrolysis species, PuY(OH)- and PuY(OH)(2)2-, form with the corresponding overall stability constants log beta(11 - 1) = 21.95 and log beta(11 - 2) = 15.29. The redox potential of the complex PuY at pH = 2.3 was determined to be E(1/2) = 342 mV. The correlation between redox potential, pH, and the protonation state of PuY- was derived to estimate the redox potential of the Pu(4+/3+)Y complex as a function of pH. Under conditions of neutral pH and excess EDTA relative to Pu4+, PuY(2)4- forms with an overall formation constant of log beta120 = 35.39. In the presence of ancillary ligands, mixed-ligand complexes form, as exemplified by the citrate and carbonate complexes PuY(citrate)3- (log beta1101 = 33.45) and PuY(carbonate)2- (log beta1101 = 35.51). Cyclic voltammetry shows irreversible electrochemical behavior for these coordinatively saturated Pu4+ complexes: The reduction wave is shifted approximately -400 mV from the reduction wave of the complex PuY, while the oxidation wave is invariant.  相似文献   

13.
The detailed analysis of the experimental spectrophotometric data obtained from solutions containing the acid-base indicator thymol blue (TB) and mercury(II) (Hg(II)) coupled with data processing by means of the SQUAD program, a chemical model was determined that includes the formation of complexes indicator-metal ion (HgTB and HgOTB), dimer species (H3TB2 and H4TB2) and monomer species (HTB and TB). The values of the overall formation constants (log beta) were calculated for the chemical equilibria involved: TB+Hg<-->HgTB log beta=16.047 +/- 0.043, TB+Hg+H2O<-->HgOHTB+H log beta=7.659 +/- 0.049, 2TB+4H<-->H4TB2 log beta=31.398 +/- 0.083, 2TB+3H<-->H3TB2 log beta=29.953 +/- 0.084 and H+TB<-->HTB-log beta=8.900. To compliment the present research, the values of the absorptivity coefficients are included for all the species involved, within a wide range of wavelengths (250-700 nm). The latter were used subsequently to carry simulations of the absorption spectra at various pH values, thus corroborating that the chemical model proposed is fully capable to describe the experimental information. Voltammetric study performed evidenced the formation of a complex with a 1:1 stoichiometry Hg(II):TB.  相似文献   

14.
Moya HD  Neves EA  Coichev N 《Talanta》1997,44(5):797-803
The evidences of spontaneous oxidation of Mn(II) by the dissolved oxygen in azide buffer medium, which is dependent on the N (-)(3)HN (3) concentration, suggested a formation of stable Mn(III) complexes due to marked colour changes. Spectrophotometric studies combined with coulometric generation of Mn(III), in presence of large excess of Mn(II), showed a maximum absorbance peak at 432 nm. The molar absorptivity increases with azide concentration (0.44-3.9 mol 1(-1)) from 3100 to 6300 mol(-1) 1 cm(-1), showing a stepwise complex formation. Potential measurements of the Mn(III) Mn(II) system in several azide aqueous buffers solutions: 1.0 x 10(-2) mol 1(-1) HN(3), (0.50-2.0 mol 1(-1)) N(-)(3) and 5.0 x 10(-2) mol 1(-1) Mn(II) and constant ionic strength 2.0 mol 1(-1), kept with sodium perchlorate, leads to the conditional potential, E(0')x, in several azide concentrations at 25.0 +/- 0.1 degrees C. Considering the overall formation constants of Mn(II) N (-)(3), from former studies, and the potential, E(0')s = 1.063 V versus SCE, for Mn(III) Mn(II) system in non-complexing media, it was possible to calculate the Fronaeus function, F(0)(L), and the following overall formation constants: beta(1) = 1.2 x 10(5) M(-1), beta(2) = 6.0 x 10(8) M(-2), beta(3) = (2.4 +/- 0.7) x 10(11) M(-3), beta(4) = (1.5 +/- 0.5) x 10(11) M(-4) and beta(5) = (9.6 +/- 0.8) x 10(11) M(-5) for the Mn(III) N (-)(3) complexes. These data give important support to understand the importance of Mn(II) and Mn(III) synergistic effect on the analytical method of S(IV) determination based on the Co(II) autoxidation.  相似文献   

15.
Lubal P  Havel J 《Talanta》1997,44(3):457-466
Uranyl (M)-selenate (L) complex equilibria in solution were investigated by spectrophotometry in visible range and potentiometry by means of uranyl ion selective electrode. The formation ML and ML(2) species was proved and the corresponding stability constants calculated were: log beta(1) = 1.57(6) +/- 0.01(6), log beta(2) = 2.42(3) +/- 0.01(3) (I = 3.0 mol 1(-1) Na(ClO(4), SeO(4)) (spectrophotometry) at 298.2 K. Using potentiometry the values for infinite dilution (I --> 0 mol 1(-1)) were: log beta(1) = 2.64 +/- 0.01, log beta(2) 3.4 at 298.2 K. Absorption spectra of the complexes were calculated and analysed by deconvolution technique. Derivative spectrophotometry for the chemical model determination has also been successfully applied.  相似文献   

16.
Furia E  Porto R 《Annali di chimica》2003,93(12):1037-1043
The complexation equilibria between Be2+ and the hydrogen salicylate (HL-) ions have been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in 3 M NaClO4. The concentrations of metal (CM) and ligand (CL) were varied between 10(-3) and 0.03 M and 2 x 10(-3) and 0.03 M, respectively, while 1 < or = CL/CM < or = 3. The hydrogen ion concentration ranged from 10(-3) to 10(-5.3) M when basic salts start to precipitate. The equilibria can be written in the general form as: pBe2+ + rHL- <==> Be(p)H(-q) (HL)r(2p-r-q) + qH+, log beta(pqr). The experimental data have been explained with the formation of BeHL+ (log beta101 = 1.46 +/- 0.05), BeL (log beta111 = -0.897 +/- 0.018), BeL2(2-) (log beta122 = -3.746 +/- 0.021), Be2(OH)L2- (log beta232 = -5.23 +/- 0.09), Be3(OH)3L3(3-) (log beta363 = -14.39 +/- 0.12). The uncertainties represent 3sigma. The predominant complex in the whole concentration range studied is the uncharged mononuclear species BeL.  相似文献   

17.
In this work, the results are presented concerning the influence of time on the spectral behaviour of adrenaline (C(9)H(13)NO(3)) (AD) and of the determination of its acidity constants by means of spectrophotometry titrations and point-by-point analysis, using for the latter freshly prepared samples for each analysis at every single pH. As the catecholamines are sensitive to light, all samples were protected against it during the course of the experiments. Each method rendered four acidity constants corresponding each to the four acid protons belonging to the functional groups present in the molecule; for the point-by-point analysis the values found were: log beta(1) = 38.25 +/- 0.21, log beta(2) = 29.65 +/- 0.17, log beta (3) = 21.01 +/- 0.14, log beta(4) = 11.34 +/- 0.071.  相似文献   

18.
As shown by spectrophotometry, two specific complexes with stoichiometry 1:1 and 2:1 are formed when penicillin V reacts with cobalt(II) in a methanolic medium. Stability constants are determined at 20 degrees , as well as the molar absorptivities at 510 nm. The results obtained are: log beta(1:1) = 1.67 +/- 0.01 l.mole(-1) and log beta(2:1) = 5.76 +/- 1.01 l(2).mole(-2), (1:1) = 13.62 +/- 0.73 and (2:1) = 12.95 +/- 0.61 l.mole(-1).cm(-1).  相似文献   

19.
The ternary Fe (III)-OH(-)-SO4(2-) complexes have been investigated at 25 degrees C in 3 M NaClO4 by potentiometric titration with glass electrode. The metal and sulfate concentrations ranged from 2.5 x 10(-3) to 0.03 M and from 5.10(-3) to 0.060 M, respectively. [H+] was decreased from 0.05 M to incipient precipitation of basic sulfate which occured at log[H+] between -2.3 and -2.5 depending on the concentration of the metal. For the interpretation of the data stability constants of HSO4(-), of binary hydroxo complexes (FeOH2+, Fe(OH)2+, Fe2(OH)2(4+), Fe3(OH)4(5+), Fe3(OH)5(4+)) and of sulfate complexes (FeSO4+, FeHSO4(2+), Fe(SO4)2-) were assumed from independent sources. The data are consistent with the presence of FeOHSO4, log beta 1-11 = -0.49 +/- 0.03. Equilibrium constants are defined as beta pqr for pFe3+ +qH+ +rSO4(2-) [symbol: see text] FepHq(SO4)r3p+q-2r. No substantial better fit could be found by adding a second mixed complex. Only a slightly smaller agreement factor resulted introducing as minor ternary complex Fe3(OH)6(SO4)3(3-) with log beta 3-63 = -5.8 +/- 0.5. Its evidence, however, cannot be considered conclusive.  相似文献   

20.
Preparative paper chromatography is proposed as a suitable method for purification of Xylenol Orange (XO). The last three dissociation constants of pure XO have been determined with the aid of the program SPEKTFOT, the values found being pK(9) = 12.34; pK(8) = 10.66; pK(7) = 6.69 (0.1M KNO(3), 20 +/- 0.5 degrees ). The complexation of zirconium with the purified reagent has been studied and the co-existence of ML and M(2) L complexes proved by use of the program DALSFEK. The following conditional stability constants of the complexes and their molar absorptivities were computed: log beta'(ml) 4.58; log beta'(M(2)L) 11.59; (ML) 2.00 x 10(4); (M(2)L) 9.40x 10(4) l.mole(-1).cm(-1) at 550 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号