首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and simultaneous spectrophotometric flow injection method for the determination of vanadium(IV) and vanadium(V) is proposed. The method is based on the effect of ligands such as 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) and diphosphate on the conditional redox potential of iron(III)/iron(II) system. A four-channel flow system is assembled. In this flow system, diluted hydrochloric acid (1.0 x 10(-2) mol dm(-3)) as a carrier for standard/sample, acetate buffer (pH 5.5) as a carrier for diphosphate solution, an equimolar mixed solution of iron(III) and iron(II) and a TPTZ solution are delivered, so that the baseline absorbance can be established by forming a constant amount of iron(II)-TPTZ complex (lambda(max) = 593 nm). Vanadium(IV) and/or vanadium(V) (400 microL) and diphosphate (200 microL) solutions are simultaneously introduced into the flow system; in this system the diphosphate solution passes through a delay coil. The potential of the iron(III)/iron(II) system increases in the presence of TPTZ, and therefore vanadium(IV) is easily oxidized by iron(III) to vanadium(V) to produce an iron(II)-TPTZ complex (a positive peak for vanadium(IV) appears). On the other hand, the potential of the redox system decreases in the presence of diphosphate, so that vanadium(V) can be easily reduced by iron(II) to vanadium(IV). In this case, the amount of iron(II) decreases according to the amount of vanadium(V). As a result, the produced iron(II)-TPTZ complex decreases (a negative peak for vanadium(V) appears). In this manner, two peaks for vanadium(IV) and vanadium(V) can be alternately obtained. The limits of detection (S/N = 3) are 1.98 x 10(-7) and 2.97 x 10(-7) mol dm(-3) for vanadium(IV) and vanadium(V), respectively. The method is applied to the simultaneous determination of vanadium(IV) and vanadium(V) in commercial bottled mineral water samples.  相似文献   

2.
A reversed-phase liquid chromatographic method for the determination of trace amounts of vanadium is described. Metal ions are converted into 2-(8-quinolylazo)-5-N,N-diethylaminophenol chelates in an off-line system. The chelates are injected onto a Zorbax CN column and separated with an aqueous acetonitrile mobile phase containing no chromogenic reagent. Unter these conditions, only vanadium(V) is spectrophotometrically detected at 540 nm among the metal ions Al(III), Ba(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V) and Zn(II). Amounts of 8.0–200 pg of vanadium(V) in 100-μl injections can be determined without interference from 10-fold molar excesses of many cations. At 0.001 a.u.f.s., the detection limit (twice the peak-to-peak noise) for vanadium(V) is 8.0 pg in 100 μl of injected solution and the relative standard deviation at 120 pg of vanadium(V) in a 100-μl injection is 3.5%. The proposed method is applied to the determination of vanadium in rain water and airborne particulates.  相似文献   

3.
The binding of pyridine by V(II) in aqueous solution shows evidence for the late onset of cooperativity. The K(1) governing formation of [V(py)](2+) (lambda(max) = 404 nm, epsilon(max) = 1.43 +/- 0.3 M(-1) cm(-1)) was determined spectrophotometrically to be 11.0 +/- 0.3 M(-)(1), while K(1) for isonicotinamide was found to be 5.0 +/- 0.1 M(-1). These values are in the low range for 3d M(2+) ions and indicate that V(II).py back-bonding is not significant in the formation of the 1:1 complex. Titration of 10.5 mM V(II) with pyridine in aqueous solution showed an absorption plateau at about 1 M added pyridine, indicating a reaction terminus. Vanadium K-edge EXAFS analysis of 63 mM V(II) in 2 M pyridine solution revealed six first-shell N/O ligands at 2.14 A and 4 +/- 1 pyridine ligands per V(II). UV/vis absorption spectroscopy indicated that the same terminal V(II) species was present in both experiments. Model calculations showed that in the absence of back-bonding only 2.0 +/- 0.2 and 2.4 +/- 0.2 pyridine ligands would be present, respectively. Cooperativity in multistage binding of pyridine by [V(aq)](2+) is thus indicated. XAS K-edge spectroscopy of crystalline [V(O(3)SCF(3))(2)(py)(4)] and of V(II) in 2 M pyridine solution each exhibited the analogous 1s --> (5)E(g) and 1s --> (5)T(2g) transitions, at 5465.5 and 5467.5 eV, and 5465.2 and 5467.4 eV, respectively, consistent with the EXAFS analysis. In contrast, [V(py)(6)](PF(6))(2) and [V(H(2)O)(6)]SO(4) show four 1s --> 3d XAS transitions suggestive of a Jahn-Teller distorted excited state. Comparison of the M(II)[bond]N(py) bond lengths in V(II) and Fe(II) tetrapyridines shows that the V(II)[bond]N(py) distances are about 0.06 A shorter than predicted from ionic radii. For [VX(2)(R-py)(4)] (X = Cl(-), CF(3)SO(3)(-); R = 4-Et, H, 3-EtOOC), the E(1/2) values of the V(II)/V(III) couples correlate linearly with the Hammett sigma values of the R group. These findings indicate that pi back-bonding is important in [V(py)(4)](2+) even though absent in [V(py)](2+). The paramagnetism of [V(O(3)SCF(3))(2)(py)(4)] in CHCl(3), 3.8 +/- 0.2 mu(B), revealed that the onset of back-bonding is not accompanied by a spin change. Analysis of the geometries of V(II) and Fe(II) tetrapyridines indicates that the ubiquitous propeller motif accompanying tetrapyridine ligation may be due to eight dipole interactions arising from the juxtaposed C-H edges and pi clouds of adjoining ligands, worth about -6 kJ each. However, this is not the source of the cooperativity in the binding of multiple pyridines by V(II) because the same interactions are present in the Fe(II)-tetrapyridines, which do not show cooperative ligand binding. Cooperativity in the binding of pyridine by V(II) is then assigned by default to V(II)-pyridine back-bonding, which emerges only after the first pyridine is bound.  相似文献   

4.
Donaldson EM 《Talanta》1970,17(7):583-591
A method for determining up to 0.15% of vanadium in high-purity niobium and tantalum metals, cast iron, steel, non-ferrous alloys and silicates is described. The proposed method is based on the extraction of a red vanadium(V)-N-benzoyl-N-phenylhydroxylamine complex into chloroform from a sulphuric-hydrofluoric acid medium containing excess of ammonium persulphate as oxidant. The molar absorptivity of the complex is 428 l.mole(-1).mm(-5) at 475 nm, the wavelength of maximum absorption. Interference from chromium(VI) and cerium(IV) is eliminated by reduction with iron(II). Common ions, including large amounts of titanium, zirconium, molybdenum and tungsten, do not interfere.  相似文献   

5.
A simple, rapid, and reliable method is given for determination of As(III) based on arsenite reduction of alcoholic iodine and titration of the equivalent iodide with Hg(II) using silver amalgam as the indicator electrode. Arsenite reduction is applied to the estimation of lead in minium, manganese in duralumin, chromium in zinc chromate, and vanadium and chromium in ilmenite, the excess of arsenite being determined by the same method used for As(III). The endpoints are accurately determined with very satisfactory potential breaks.  相似文献   

6.
Yatirajam V  Ram J 《Talanta》1974,21(6):439-443
A simple and selective extraction of molybdenum is described. Tungsten is masked with tartaric acid and molybdenum(VI) is reduced in 2M hydrochloric acid by boiling with hydrazine sulphate. Iron, copper and vanadium are then masked with ascorbic acid, thiourea and potassium hydrogen fluoride respectively. The molybdenum(V) is extracted as its xanthate complex into chloroform, from 1M hydrochloric acid that is 0.4M potassium ethyl xanthate. The complex is decomposed by excess of liquid bromine, and the molybdenum is stripped into alkaline hydrogen peroxide solution. The molybdenum is then determined by standard methods. Large amounts of Cu(II), Mn(II), Fe(III), Ti(IV), Zr, Ce(IV), V(V), Nb, Cr(VI), W(VI), U(VI), Re(VII) and Os(VIII) do not interfere. Several synthetic samples and ferromolybdenum have been rapidly and satisfactorily analysed by the method.  相似文献   

7.
It is found that iron(III), titanium(IV), vanadium(V), copper(II), lead(II), and zinc(II) ions are adsorbed on aluminum oxide modified with Tiron. The adsorption of iron(III) is accompanied by the violet coloration of the adsorbent (560 nm), which indicates the formation of a 1: 2 complex on the adsorbent surface; copper forms a 1: 1 yellowish green complex (430 nm). The group preconcentration of metal ions on this adsorbent in a dynamic mode is possible; the preconcentration rate is 2.5 × 103. The method for the determination of metal ions is proposed based on the adsorption recovery of the elements followed by the direct determination by X-ray fluorescence spectroscopy on the adsorbent surface.  相似文献   

8.
Mandal SK 《Talanta》1979,26(2):133-134
Vanadium(III) solutions can be used in direct titrations of iron(III), copper(II), thallium(III), molybdenum(VI), uranium(VI), vanadium(V), chromium(VI) and manganese(VII) in milligram amounts. The titrations are done at 70-80 degrees for iron(III), copper(II), thallium(III), molybdenum(VI) and at room temperature for vanadium(V), chromium(VI) and manganese(VII). Uranium(VI) is titrated at 70-80 degrees in presence of iron(II). The vanadium(III) solution is prepared by reduction of vanadium(V) to vanadium(IV) with sulphur dioxide, followed by addition of phosphoric acid and reduction with iodide, and is reasonably stable.  相似文献   

9.
The sensitive and selective adsorption voltammetric determination of the vanadium(V)-antipyrylazoIII complex in HAc-NaAc solution is investigated. The V-complex is strongly adsorbed onto a stationary Hg-electrode and is reduced at a potential more negative than that corresponding to the reduction of its ligand. The conditions for determining vanadium are investigated and the mechanism of the reduction peak of the vanadium complex is discussed, as also the influence of foreign ions on the determination of vanadium. An at least 20-fold excess of foreign ions does not cause any interference. The detection limit is 4×10–10 mol/l V with 3 min enrichment time.  相似文献   

10.
A spectrophotometric determination of vanadium as vanadium(IV) pyridine thiocyanate is described. The blue complex is formed in acidic aqueous solution and extracted into pyridine-chloroform. Absorbance is measured at 7.40 mμ. The range of best accuracy for 1-cm cells is from about 80 to 240 μg of vanadium per ml, and sensitivity is 0.4 μg of vanadium per cm2 at 7.40 mμ. The vanadium may be present initially as vanadium(IV) or vanadium(V), which is reduced to vanadium(IV) by the large excess of thiocyanate ion added. Several elements interfere in the determination ; a separation procedure involving mercury cathode electrolysis is suggested.  相似文献   

11.
The reaction between vanadium(III) acetylacetonate and N-hexanoylsalicylhydrazide (H3hshz) yields a linear trinuclear mixed valence vanadium(V/IV/V) complex, V3O3(hshz)2(OEt)2, 1 (where hshz3- is a triply deprotonated trianionic N-hexanoyl salicylichydrazidate), with a pseudo C2 symmetry. A V(IV)O2+ group is at the center of complex 1 and is spanned by two terminal vanadium(V) ions with a square pyramidal geometry bridged via hydrazido ligands. In the crystalline form, the oxo group of the central vanadium(IV) ion is weakly coordinated to one of the terminal square pyramidal vanadium(V) ions of the neighboring trinuclear complex to form a dimeric structure. These dimers are linked via bis mu-alkoxo bridges to form a one-dimensional zigzag chain structure. In chloroform or methylene dichloride, the weak linkages between the trinuclear complexes present in the crystalline form are broken, and only the mixed valence trinuclear complex can be identified. In dimethyl sulfoxide or dimethylformamide, the trinuclear complex partially dissociates, and the unligated ligands remain in equilibrium with the trinuclear complex.  相似文献   

12.
A study of the coloured complexes of 51 N-arylhydroxamic acids with vanadium(V) in hydrochloric acid media is described. The absorption spectra of the coloured chloroform extracts and the molar absorptivities are compared. The effects of different substituents attached to the carbon and nitrogen atom of the hydroxamic acid functional group are discussed. A rapid extraction-spectrophotometric method for the determination of vanadium(V) is described, employing the most promising of these reagents, N-m-tolyl-p-methoxybenzohydroxamic acid. The method is highly selective and tolerates large amounts of diverse ions usually associated with vanadium-bearing materials including iron(III), aluminium(III), chromium(III), nickel(II), cobalt(II), zinc(II) and manganese(II).  相似文献   

13.
Jiang HL  Kong F  Fan Y  Mao JG 《Inorganic chemistry》2008,47(16):7430-7437
Two new metal selenites with a combination of vanadium(IV) or vanadium(V) cations, namely, ZnVSe 2O 7 and Cd 6V 2Se 5O 21, have been synthesized by hydrothermal and high-temperature solid-state reactions, respectively. The structure of ZnVSe 2O 7 features a 3D network of vanadium(IV) selenite with 1D tunnels occupied by zinc(II) ions. The 3D network of vanadium(IV) selenite is formed by corner-sharing V (IV)O 6 octahedral chains bridged by selenite groups. In Cd 6V 2Se 5O 21, the interconnection of cadmium(II) ions by bridging and chelating selenite groups led to a 3D framework with large tunnels along the b axis, and the 1D chains of corner-sharing V (V)O 4 tetrahedra are inserted in the above large tunnels and are bonded to the cadmium selenite framework via Cd-O-V bridges. Both compounds exhibit broad emission bands in the blue-light region. Results of magnetic property measurements show there is significant antiferromagnetic interaction between V (4+) centers in ZnVSe 2O 7. The electronic structure calculations for both compounds have been also performed.  相似文献   

14.
The promoting effect of vanadium(V, IV) in the reaction of gallic acid oxidation with bromate ions in aqueous solutions was studied, and the dependence of the rates of catalytic and noncatalytic reactions on the concentration of components was found. A catalytic mechanism was proposed based on the experimental results and data of quantum-mechanical calculations. The linear dependence of the rate of the catalytic reaction on the concentration of vanadium(V)/vanadium(IV) was used to determine these ions in solutions by catalytic photometry. The detection limit was 0.01 μg in an aliquot portion of the test solution; the determination error was less than 20%. The conditions were found for stabilizing the properties of paper supports for more than 30 days, since the interaction of filter and chromatographic papers with bromate ions was found. An adsorption- catalytic test method was proposed for the semiquantitative visual determination of vanadium ions in water and aqueous solutions by the color of the pretreated paper strip immersed in the test solution. The detection limit for vanadium ions was 0.1 mg/L. The 100-fold amounts of Ni(II), Mn(II), Cr(III), and Co(II) do not interfere with the determination. The method was tested on river and sea water samples from different sources.  相似文献   

15.
A rapid and reliable method is given for the determination of vanadium based on oxidation of the V(IV) with a known excess of bromate to V(V). The unreacted oxidant as well as V(V) are subsequently reduced with sulfurous acid to V(IV). The resulting Br?1 was potentiometrically titrated with Hg(I) using silver amalgam as the indicator electrode. The method finds application to the analysis of some binary and ternary mixtures.  相似文献   

16.
Frank P  Hodgson KO 《Inorganic chemistry》2000,39(26):6018-6027
A K-edge X-ray absorption spectrum (XAS) fitting approach has been developed to speciate elements of interest in complex materials and used here to model the storage of biological vanadium within whole blood cells from the tunicate Ascidia ceratodes. The response of the K-edge XAS of solution-phase V(III) to increasing c(sulfate) at constant pH 1.8 produced specific and systematic effects in the preedge transition at 5468.8 eV (preedge transitions: 1s-->4A2 at 5464.9 +/- 0.1 eV, 1s-->4T2 at 5466.9 +/- 0.1 eV, and 1s-->4T1 at 5468.8 +/- 0.1 eV for 11 different V(III)/sulfate solutions). In contrast, variations in acidity (as pH) at constant c(sulfate) systematically modified the V(III) preedge XAS at 5466.9 eV. The energy position of the K-edge absorption maximum also serially shifted -0.32 eV/pH unit, from 5483.7 eV (pH 3.0) to 5484.7 eV (pH 0.3). Fits to the V-K XAS of two samples of A. ceratodes whole blood cells representing dozens of animals implied storage of V(III) ions in four predominant solution regimes: approximately 10% high sulfate/pH 0 acid; approximately 40% high sulfate/pH 1.8 acid; approximately 40% moderate sulfate/pH 1.8 acid; approximately 10% moderate sulfate/pH 3 acid. For lysed blood cells, the best fit represented 63% of the V(III) in a pH 1.6 sulfate-free environment and a further 16% in acidic sulfate solution. Nearly 18% of lysed cells vanadium(III) appeared in a tris(catecholate)-like environment. A detailed speciation of biological vanadium complex ions was calculated from these fits by application of the known equilibrium constants governing V(III) and sulfate in acidic aqueous solution. The utility of blood cell V(III) to ascidians is discussed. Fits to K-edge XAS spectra using the XAS spectra of appropriate models are suggested to be generally applicable to elucidating the state of metal ions in a wide variety of complex environments.  相似文献   

17.
Combined electrochemical and UV-visible spectroelectrochemical methods were utilized to elucidate the prevailing mechanisms for electroreduction of previously synthesized porphyrin-corrole dyads of the form (PCY)H2Co and (PCY)MClCoCl where M = Fe(III) or Mn(III), PC = porphyrin-corrole, and Y is a bridging group, either biphenylenyl (B), 9,9-dimethylxanthenyl (X), anthracenyl (A), or dibenzofuranyl (O). These studies were carried out in pyridine, conditions under which the cobalt(IV) corrole in (PCY)MClCoCl is immediately reduced to its Co(III) form, thus enabling direct comparisons with the free-base porphyrin dyad, (PCY)H2Co(III) under the same solution conditions. The compounds are all reduced in multiple one-electron-transfer steps, the first of which involves the M(III)/M(II) process of the porphyrin in the case of (PCY)MClCoCl and the Co(III)/Co(II) process of the corrole in the case of (PCY)H2Co. Each metal-centered redox reaction may be accompanied by the gain or loss of pyridine axial ligands, with the exact stoichiometry of the exchange process depending upon the specific combination of metal ions in the dyad, their oxidation states, and the particular spacer in the complex. Before this study was started, it was expected that the porphyrin-corrole dyads with the largest spacers, namely, O and A, would readily accommodate the formation of cobalt(III) bis-pyridine adducts because of the larger size of the cavity while dyads with the smallest B spacer would seem to have insufficient room to add even a single pyridine within the cavity, as was structurally seen in the case of (PCB)H2Co(py). This is clearly not the case, as shown in the present study. A reversible Co(III)/Co(II) reaction is seen for (PCB)MnClCoCl at -0.62 V, which when combined with spectroscopic data, leads to the assignment of (PCB)Mn(III)(py)2Co(III)(py) as the species in pyridine. The reduction of (PCB)Mn(III)(py)2Co(III)(py) to (PCB)Mn(II)(py)Co(III)(py) is accompanied on the slower spectroelectrochemical time scale by the appearance of a 603 nm band in the UV-vis spectra and is consistent with the addition of a second pyridine ligand to the Co(III)(py) unit of the dyad as one ligand is lost from the electrogenerated manganese(II) porphyrin, thus maintaining one pyridine ligand within the cavity. A different change in the coordination number is observed in the case of (PCB)FeClCoCl. Here the initial Fe(III) complex can be assigned as (PCB)Fe(III)ClCo(III)(py), which has no pyridine molecule within the cavity and the singly reduced form is characterized as (PCB)Fe(II)(py)2Co(III)(py)2, which contains two pyridine ligands inside the cavity. A following one-electron reduction of the Fe(II)/Co(III) complex then gives [(PCB)Fe(II)(py)2Co(II)]-.  相似文献   

18.
Capillary electrophoresis-dynamic reaction cell inductively coupled plasma mass spectrometry (CE-DRC-ICP-MS) for the speciation of iron(III/II), vanadium(V/IV) and chromium(VI/III) is described. Two different CE migration modes were employed for separating the six metal ions using pre-capillary complexation. One is counter-electroosmotic mode in which iron(III/II) and vanadium(V/IV) ions were well separated using a 60 cm x 75 microm i.d. fused silica capillary. The voltage was set at +22 kV and a 15 mmol l(-1) tris(hydroxymethyl)aminomethane (Tris) buffer (pH 8.75) containing 0.5 mmol l(-1) ethylenediaminetetraacetic acid (EDTA) and 0.5 mmol l(-1) ortho-phenanthroline (phen) was used as the electrophoretic buffer. The other is co-electroosmotic mode in which chromium(VI/III) ions were well separated while the applied voltage was set at -22 kV and a 10 mmol l(-1) ammonium citrate buffer (pH 7.7) containing 0.5 mmol l(-1) diethylenetriaminepentaacetic acid (DTPA) and 0.01% polybrene was used as the electrophoretic buffer. The mass spectra were measured at m/z 51, 52 and 56 for V. Cr and Fe, respectively. The interfering polyatomic ions of 35Cl16O+, 40Ar12C+ and 40Ar16O+ on 51V+, 52Cr+ and 56Fe+ determination were reduced in intensity significantly by using NH3 as the reaction cell gas in the DRC. The detection limits were in the range of 0.1-0.5, 0.4-1.3 and 1.2-1.7 ng ml(-1) for V, Cr and Fe, respectively. Applications of the method for the speciation of V, Cr and Fe in wastewater were demonstrated. The recoveries were in the range of 92-120% for various species.  相似文献   

19.
An RP-HPLC method for the separation and determination of aluminium(III), vanadium(V), iron(III), copper(II) and nickel(II) with CALKS (Chromazol KS) and PAR ([4-(2-pyridylazo)resorcinol]) chelating on a YWG-ODS column was developed. A mixture of methanol-tetrahydrofuran(THF)-water (60:5:35 v/v) containing 0.2 mol/L LiCl, 5 x 10(-5) mol/L CALKS, 5 x 10(-5) mol/L PAR and acetate buffer solution (pH 4.9) was selected as mobile phase. The method has high sensitivity, with the detection limits being 6 ng/mL for aluminium(III), 3.5 ng/mL for vanadium(V), 10.4 ng/mL for iron(III), 6.3 ng/mL for copper(II) and 8.7 ng/mL for nickel(II). It also has good selectivity, so that most foreign metal ions do not interfere under the optimum conditions. The method can be applied to the simultaneous determination of trace amounts of aluminium, vanadium, iron, copper and nickel in rice and flour samples.  相似文献   

20.
《Polyhedron》2011,30(6):1191-1200
In this paper we characterize new, mixed ligand complexes of zinc(II), cobalt(II) and cadmium(II) with tri-tert-butoxysilanethiolate and 2-(2′-hydroxyethyl)pyridine ligands. Due to the chelating versus non-chelating behavior of 2-(2′-hydroxyethyl)pyridine ligand we have obtained an interesting structural variety in the studied system. The presented coordination patterns together with the results of NMR studies have been used to illustrate a rapid chemical exchange undergoing in methanolic solutions of zinc(II) and cadmium(II) complexes. UV-Vis spectra of cobalt(II) species have also evidenced an exchange in the case of cobalt(II) complex. The relative strength of hydrogen bond formed by hydroxyl group bonded to Zn(II), Co(II) or Cd(II) was evaluated by analysis of structural parameters and position of the OH stretching vibrations in the FT-IR spectra of the complexes in solid state. The data were compared with the activity of zinc (native) alcohol dehydrogenase and alcohol dehydrogenase substituted with cobalt and cadmium ions. The enthalpies of proton abstraction in zinc and cobalt complexes were calculated and found to be very similar. The attempt to apply zinc tri-tert-butoxysilanethiolate as a catalyst in the biomimetic reaction of reduction of N-benzylnicotinamide chloride by ethanol was unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号