首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary It has been shown that Pb, Sn and In form alloys with the Pd matrix modifier during the ashing and the beginning of the atomization process in graphite furnace atomic absorption spectrometry.Pb and Sn were chosen as analytes and Ag, Sb, Cu, Au, Pt, Pd, Cd, and Mg as co-existing elements or matrix modifiers. The activity coefficients of Pb in the alloys Pb-Ag and Pb-Sb are similar to the value of Pb alone (or about 1.0), and those in the alloys Pb-Au, Pb-Pt and Pb-Mg are lower than the value of 1.0; in particular the activity coefficients of Sn in the alloy Sn-Pd is extremely low. The activity coefficients of Pb in the alloys Pb-Cd and Pb-Cu are higher than 1.0.The movement of volatilization to higher effective temperatures in the atomization were studied; it was found that: 1) Where the activity coefficient of the analyte was lower than 1.0, intermetallic compounds were formed and the atomization shifted to higher temperatures. 2) Atomization was not altered (even though the activity coefficients were different from 1.0) if the modifier elements formed alloys with Pb, which had melting temperatures lower than the ashing and the initial temperatures of the atomization of Pb. 3) For metals such as Mg, which are neither reduced to metal nor form alloys with the analyte during the ashing and the atomization process, the role as matrix modifier is different, as has also been studied herein.  相似文献   

2.
In order to discuss the atomization process of an analyte element occurring in a graphite furnace for atomic absorption spectrometry, we measured variations in the characteristic temperature with the progress of an atomization stage, by using a two-line method under the assumption of a Boltzmann distribution. For this purpose, iron was chosen as the analyte element. Also, the atomic absorption of two iron atomic lines, Fe I 372.0 nm and Fe I 373.7 nm, was simultaneously monitored as a probe for the temperature determination. This method enables variations in the gas temperature to be directly traced, yielding a temperature distribution closely related to the diffusion behavior of the probe element in the furnace. This temperature variation was very different from the furnace wall temperatures, which were monitored in conventional temperature control for atomic absorption spectrometry. Correlations between the gas temperature and the charring/atomizing temperatures in the heating program of the furnace were investigated. The atomization of cadmium and tellurium was also investigated by a comparison between the gas temperature with the wall temperature of the furnace. The atomic absorption of cadmium or tellurium appeared to be apart from the absorption of iron while the gas temperature was still low. Therefore, the analyte atoms could be atomized through direct contact with the wall of the graphite furnace, which has a much higher temperature compared to the gas atmosphere during atomization. Their atomization would be caused by conductive heating from the furnace wall rather than by radiant heating in the furnace.  相似文献   

3.
The advantages of electrothermal atomization by rapid heating (faster than 2000°C s−1) in atomic absorption for the determination of volatile elements are studied. The aim is to control the matrix effects, particularly the very high non-specific absorptions. It is shown that, unlike normal heating, now rapid heating makes it possible to atomize a volatile element without hardly covolatilizing its matrix, as a result of the change in the optimum atomization temperatures.Application examples are given: direct determination of cadmium and lead (atomized respectively at only 900 and 960°C) in sea water and related products. This method is likely to be applicable to other matrices which covolatilize normally with other elements. The mechanisms of atom formation in rapid heating are also investigated.  相似文献   

4.
The sensitivity of graphite furnace atomic absorption spectrometry (GFAAS) to arsenobetaine (AB) was 1.3-times higher than to inorganic As. In order to understand the mechanism underlying this observation, the atomization processes for both chemical species were investigated in terms of the enthalpy change (DeltaH) during the atomization process in GFAAS. The enthalpy change of AB was slightly lower than that of inorganic As, which suggested that AB was atomized more efficiently than was inorganic As. Moreover, it was observed that some co-existing organic materials enhanced the analytical sensitivity of inorganic As. The sensitivity difference between inorganic As and AB depended upon the mechanisms of their atomization processes.  相似文献   

5.
Potentialities of an Ar/H2 microwave induced plasma afterglow at 8.2 mbar as an atomization source in electrothermal atomic absorption spectrometry have been examined. More specifically the atomization efficiency, as shown from appearance temperatures, and the reaction mechanisms of the atomization of the oxides and chlorides of alkaline earth and transition metals have been investigated and compared with conventional electrothermal atomization. For all the investigated metal chlorides and alkaline earth oxides, a considerable decrease in appearance temperature (some 500 K), is observed in the plasma afterglow. Such enhanced atomization is believed to be linked to reactions with H atoms. No plasma enhancement, however, is measured for the atomization of the transition metal oxides. All metal oxides are effectively reduced to free metal in the solid state by the Ar/H2 afterglow, and as a consequence the supply rate is governed by the metal sublimation for these compounds. For metal chlorides, however, strong evidence is found for the atomization process to proceed via gas phase reactions.  相似文献   

6.
The processes of atom formation and dissipation in a molybdenum micro-tube atomizer have been studied to obtain information on the reaction involved. Vapor temperature was found to be close to atomizer surface temperature. Appearance temperatures and activation energies were obtained for Al, Co, Cu, Mn, Pb, Sb, Se, Sn and Te in argon and argon-hydrogen atmospheres. The atom formation processes are divided into two groups : the reduction of the metal oxide followed by the atomization of free metal, and thermal dissociation of the metal oxide. Hydrogen significantly changes atom formation processes for some metals compared to those in pure argon. The dissipation process of atoms from the micro-tube atomizer appears to be purely gas-phase diffusional.  相似文献   

7.
A commercially available pulse laser was used with a graphite furnace (GF) atomic absorption (AA) spectrometer for the trace analysis of metals in solid samples.Laser ablated solid material was deposited onto the inner surface of the GF. The optimum deposition temperature was 300 K. The deposited aerosol was atomized in a conventional GF heating regime.The analytical results in the deposition technique for Cd, Zn, Pb, Ag, Mn, Fe and Ni contained in different target materials were compared with results obtained with another laser ablation GF technique, which is characterized by the transport of the ablated material into a constant temperature GF with immediate atomization of the aerosol particles. The deposition technique improved the sensitivity and precision for the low volatile elements Cd, Zn and Pb. In contrast, the aerosol injection technique is preferable for the determination of elements that require more energy for atomization. Working with tube temperatures of up to 2800 K the authors obtained higher absorbance values (peak height) for Mn, Fe and Ni using the injection technique. The use of multiple deposition of laser ablated material inside the GF to achieve improved detection limits and higher precision for one atomization seems promising only for selected matrices.  相似文献   

8.
Takada K 《Talanta》1985,32(9):921-925
By using a cup furnace covered with a graphite lid, it is possible to enhance the atomic-absorption signal for Cd, Zn, Sb, Pb, In, Cu and Fe in solution and for Pb in tin metal (directly atomized). When the analyte is atomized in the cup furnace, part of it condenses on the lid, from which it can be re-evaporated and atomized to give a second absorption signal and hence greater sensitivity. When the lid is small, so that the temperature lag is short, the initial atomic-absorption intensity is also enhanced. The enhancement is due to an increased residence time of the atomized analyte in the cup.  相似文献   

9.
Volynsky AB  Sedykh EM  Bannykh LN 《Talanta》1991,38(7):761-765
It has been found that the atomic-absorption signal for tin is reduced in the presence of 5 micro1 of 0.05-0.30M boric acid at STPF-conditions. It has been proposed that the reason for the boron interferences is the formation of SnB(g) at the atomization stage. In the presence of palladium chloride the interferences from 0.2M boric acid are reduced by a factor of 1.3. The interferences are reduced most effectively when the sample is atomized from a polycrystalline graphite platform or in the presence of ascorbic acid. The interference of up to 0.2M boric acid can be suppressed and the area of the tin signal doubled. It is proposed that the observed phenomenon is connected with the bonding of boron as non-volatile B(4)C. Ascorbic acid is the most effective matrix modifier for the determination of different trace elements in boron compounds.  相似文献   

10.
《Analytical letters》2012,45(9):781-795
Abstract

Organotin compounds are analyzed by graphite furnace atomic absorption (GFAA) spectrometry. The graphite cuvette furnaces which were used were treated chemically with solutions containing V, Mo, Cr, and Zr. The zirconium treatment shows the greatest reduction in atomization interferences for the analysis of tin. The tin atomic absorption signals observed for the organotin compounds can be directly compared t o the aqueous tin standard, in terms of sensitivity.  相似文献   

11.
We established that the partial pressure of oxygen in the graphite furnace is several orders of magnitude higher than is explained by the thermodynamic equilibrium of the O2 + 2C = 2CO reaction. Taking this into account has led us to some new conclusions for thermal destruction, atomization and dissociation of the oxygen-containing compounds. It explains why some elements are reduced to the metal on graphite, while other elements are vaporized as the oxide. For the elements vaporized as the oxide, it is shown that there is good agreement between the calculated thermal dissociation temperature of the metal oxide and the observed appearance temperature. For these metals, the atomization of the oxides proceeds by their thermal dissociation without direct participation of carbon in the reduction process. The presence of oxygen in the purge gas accounts for anomalous curvature in, for example, the Sn calibration curve, large variations in sensitivity for some elements (Ga, Ge, Sb, Se, Sn) comparing gas-stop and full-flow modes of atomization and the enhancement of sensitivity for some elements in oxygen-activated graphite furnaces.  相似文献   

12.
An in situ comparative study of the reduction of Co-containing catalysts for the Fischer–Tropsch process in hydrogen and supercritical (SC) isopropanol is performed by ferromagnetic resonance (FMR) spectroscopy. According to the FMR data, the reduction of cobalt-containing oxide particles to metal in hydrogen starts at temperatures of ~360°C, which is substantially lower than a temperature of the formation of metal particles of the active phase according to powder X-ray diffraction and differential thermogravimetry data (Т ~ 450°C). In SC isopropanol, the reduction to Co metal occurs at lower temperatures (T ~ 245°C) as compared with the reduction temperature for these catalysts in hydrogen. It is shown that the reduction in SC isopropanol can lead to the formation of superparamagnetic Co nanoparticles with a narrow particle size distribution.  相似文献   

13.
This work utilizes electrolytic separation and preconcentration of analyte metals on a thin tungsten wire electrode prior to their determination by furnace atomic absorption spectrometry (AAS). Only a very basic electrolysis system operating at constant applied voltages is needed. Following the deposition step, the wire electrode is inserted into the central region of a miniature CRA 90 furnace and electodeposited metals atomized. Tungsten wire melts in the furnace environment at approximately 2500°C and this restricts the range of metals which can be determined by this technique. So far, elements characterized by relatively low atomization temperatures, such as Cd, Zn, Ag, Pb and Cu, have been studied. Sensitivity improvements ranging from 1.5 to 15-fold over the conventional furnace AAS have been achieved with deposition times between 30 and 300 s. No appreciable background absorption has resulted during the atomization step following depositions from NaCl solutions, confirming very efficient separation. The technique has been successfully applied to the determinations of Pb in blood digest and in seawater. Apart from the analytical applications, the wire deposition approach to furnace atomization offers some more fundamental advantages over systems operated in the conventional manner. It can be used to study the atomization behaviour of elements in metallic form in relation to the atomization of their different compounds. Moreover, by rapidly introducing the wire into the furnace preheated to a constant temperature, very fast atomization is achieved with corresponding improvements in analytical sensitivities. The rapid wire introduction technique also lends itself to studies of the removal of sample vapour from furnaces.  相似文献   

14.
The ionicity and atomization energy of 27 bivalent metal halides have been estimated. The calculation was performed with experimental values of the interatomic distances. The atomization energy was a function of only the bond ionicity, which was determined by minimizing the energy. For layer structures, account was taken of the energy of anion polarization due to static fields induced on the anions by their asymmetric environment. The estimates of ionicity are close to those according tc Phillips. The error in calculating the atomization energy is no greater than I eV, averaging 3.5%.Published as a matter for discussion.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 21, No. 6, pp. 708–713, November–December, 1985.  相似文献   

15.
Yan XP  Ni ZM  Yang XT  Hong GQ 《Talanta》1993,40(12):1839-1846
The kinetic parameters of indium atomization in electrothermal atomic absorption spectrometry (ETAAS) have been determined by a newly proposed method. Effect of the atomizer surface and the palladium modifier on the kinetics of indium atomization has been investigated. The mechanisms of indium atomization seem to be identical for the pyrolytically coated graphite and the uncoated graphite tubes, i.e. the rate-limiting step for the atomization changes from a first order kinetics at lower temperatures into a nearly 1/3 order kinetics at higher temperatures, which may suggest that the analyte moves from a dispersed state to agglomates with increasing temperature. However, for the zirconium coated graphite tube, the atomization of indium is controlled by a single mechanism with the kinetic order of near 2/3 and the activation energy of 186 ± 13 kJ/mol. Relatively weak indium—zirconium carbide interactions and the release of indium from the sphere of molten indium metal on the zirconium coated surface are suggested. In the presence of palladium, a simple mechanism, i.e. the release of indium from the solid solution of the In and the Pd on the pyrolytically coated graphite surface, is proposed to account for the observed first order kinetics and the activation energy of 421 ± 27 kJ/mol.  相似文献   

16.
Amorphous acidic metal(IV) phosphates of zirconium, titanium and tin have been prepared and hydrogen-exchanged for bivalent Pd, Pt and Ni. These bivalent metals were returned to the zero valent state by reducing them with either hydrogen at 400 °C or with sodium tetrahydroborate at room temperature. The resulting Pd0, Pt0 and Ni0 phosphates were investigated as selective catalysts for heterogeneous hydrogenation of alkenes in solution at normal temperatures and pressures and, for Ni, also in the vapour phase. Quantitative studies on rates of hydrogenation are discussed. The usual methods for preparing metal(IV) phosphates give either crystalline or amorphous solids having low specific surfaces areas. A method has been developed, by which metal(IV) phosphates having large surface areas (lsa) may be prepared easily. These lsa supports take up large amounts of transition metal cations by simple exchange. The enhanced incorporation of Pd, Pt or Ni and increases in surface areas of the phosphate supports have provided some active, selective catalysts. Pd/Ti phosphates were the most active and compared well with commercial Pd on carbon. Ni/Ti phosphate is a very selective catalyst for vapour phase hydrogenation of alkenes and, at slightly higher temperatures, it is an efficient hydrocarbon cracking catalyst.  相似文献   

17.
The use of ammonium molybdate to minimize the phosphate interference when measuring selenium by electrothermal atomic absorption spectrometry (ETAAS) with deuterium background correction was evaluated. Ammonium molybdate did not produce a selenium thermal stabilization; however, the presence of ammonium molybdate decreased the phosphate interference. The study was carried out with mussel acid digests and mussel slurries. Pd–Mg(NO3)2 was used as a chemical modifier at optimum concentrations of 300 and 250 mg l−1, respectively, yielding optimum pyrolysis and atomization temperatures of 1200 and 2100 °C, respectively. A yellow solid (ammonium molybdophosphate) was obtained when adding ammonium molybdate to mussel acid digest solutions. This precipitate can be removed after centrifugation prior to ETAAS determination. Additionally, studies on the sampling of the solid ammonium molybdophosphate (AMP) together with the liquid phase, as a slurry, were also developed. The volatilization of the solid AMP was not reached at temperatures lower than 2500 °C. By this way, phosphate, as AMP, is not present in the vapor phase at the atomization temperature (2100 °C), yielding a reduction of the spectral interference by phosphate. The proposed method was validated analyzing three reference materials of marine origin (DORM-1, DOLT-1 and TORT-1). Good agreement with the certified selenium contents was reached for all cases.  相似文献   

18.
In the present work the performance of different platform and tube geometries and atomization temperatures in graphite furnace atomic absorption spectrometry was investigated, using the determination of Cd in whole blood as an example. Grooved, integrated and fork platforms as well as atomization temperatures between 1200 °C and 2200 °C were investigated in a longitudinally heated graphite atomizer and compared with the performance of a transversely heated furnace. In the longitudinally heated furnace the increase of the atomization temperature in the studied range resulted in an increase of matrix effects for all platform geometries. The integrated platform exhibited slightly lower sensitivity and increased multiplicative interferences in comparison to the other two platform designs. Interference-free Cd determination was possible with all types of platforms and 1200 °C as the atomization temperature as well as with grooved and fork platforms at 1700 °C. On the other hand, lower atomization temperatures resulted in poorer limits of detection, due to the longer integration time needed. No matrix effect was observed at any atomization temperature using the transversely heated atomizer; in addition, limits of detection were better than those observed with the longitudinally heated atomizer. Best values were around 0.02 μg L− 1 with the latter atomizer compared to values around 0.02 μg L− 1 with the former one.  相似文献   

19.
Recently we developed an access to metal- and metal-oxide colloids based on thermal evaporation of metals into ionic liquids (ILs). Here we present systematic studies on the long-time stability of gold and copper nanoparticles (NPs) in different ILs. The influence of metal concentration and temperature on the ripening of the as-prepared gold NPs in different ILs was investigated by transmission electron microscopy (TEM) and UV-vis absorption measurements. Short alkyl chain-length-methyl-imidazolium salts with weakly coordinating perfluorinated counter anions (PF(6), BF(4) or Tf(2)N, bis(trifluoromethanesulfonyl)amide) were found to be better stabilizers compared to ILs with cations bearing long alkyl chains (trihexyltetradecylphosphonium, 1-octyl-3-methylimidazolium) and anions of higher coordination strength (DCA, dicyanamide). In the latter ILs fast particle growth and agglomeration was observed. In the well-stabilizing ILs initially very small NPs form which undergo a similar ripening process at room temperature as at higher temperatures. The final particle size depends largely on the used IL and the metal and to a minor extent on the temperature. The metal concentration seems to be an unimportant factor.  相似文献   

20.
The atomic absorption spectrometry of tin with atomization in a molybdenum microtube is described. The addition of hydrogen to the argon purge gas improves the efficiency of atomization of tin; measurements are best done at 224.61 nm. Phosphoric acid lowers the atomization temperature of tin, and depresses the interferences from diverse elements. Tin in canned foods (fruit juices and drinks) can be determined by direct atomization after dilution with phosphoric acid. Prior extraction is necessary for analysis of geological materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号