首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A system far from equilibrium, where the surfactant transfer from a small drop located in the aqueous bulk to the air-water interface results in spontaneous nonlinear oscillations of surface tension, is theoretically and experimentally considered. The oscillations in this system are the result of periodically arising and terminating Marangoni instability. The surfactant under consideration is octanoic acid, the dissociated form of which is much less surface-active than the protonated form. Numerical simulations show how the system behavior can be controlled by changes in pH and ionic strength of the aqueous phase. The results of numerical simulations are in good agreement with experimental data.  相似文献   

3.
Spontaneous micelles formation by ionic surfactants has been detected amperometrically as an appearance of ion transfer across the water–dichloroethane interface noticed from linear dependence between the current and potential (Ohm’s law). At low surfactant concentrations, when its spontaneous aggregation does not occur, the micelles formation facilitated by a potential across the interface has been registered. The transfer of redox inactive proteins through water–dichloroethane interface in the presence of surfactant has been observed voltammetrically. It has been shown, that the presence of protein does not affect thermodynamics of micelles formation, but accelerates kinetics of ion transfer through the interface. The electrochemically controlled transfer of redox inactive proteins through liquid|liquid interface may lead to the development of methods for direct amperometric detection of biomolecules.  相似文献   

4.
The results of theoretical and experimental studies of spontaneous nonlinear oscillations produced at the liquid/liquid interface by surfactant transfer from a point source situated in one of the bulk phases are presented. The theoretical analysis is based on the direct numerical simulation of the system evolution. The experiments are performed for the heptane/water interface using middle-chain aliphatic alcohols as surfactants. The results for the oil/water interface are compared with the corresponding data obtained for the air/water interface. The presented results allow the conclusion that auto-oscillations at the air/liquid and liquid/liquid interfaces are governed by very similar mechanisms but their characteristics are strongly dependent on the properties of the two contacting media, in particular, on the surfactant partition coefficient.  相似文献   

5.
Systems far from equilibrium are able to self-organize and often demonstrate the formation of a large variety of dissipative structures. In systems with free liquid interfaces, self-organization is frequently associated with Marangoni instability. The development of solutal Marangoni instability can have specific features depending on the properties of adsorbed surfactant monolayer. Here we discuss a general approach to describe solutal Marangoni instability and review in details the recent experimental and theoretical results for a system where the specific properties of adsorbed layers are crucial for the observed dynamic regimes. In this system, Marangoni instability is a result of surfactant transfer from a small droplet located in the bulk of water to air/water interface. Various dynamic regimes, such as quasi-steady convection with a monotonous decrease of surface tension, spontaneous oscillations of surface tension, or their combination, are predicted by numerical simulations and observed experimentally. The particular dynamic regime and oscillation characteristics depend on the surfactant properties and the system aspect ratio.   相似文献   

6.
The electrochemical instability has been shown to appear in the transfer of cationic surfactant ions across the 1,2-dichloroethane/water interface. Cyclic voltammograms possess all fundamental characteristics that are predicted by the theory of electrochemical instability: the presence of the instability window, that is, the potential range where the interface becomes unstable, the location of the instability window around the standard ion transfer potential of surface-active ions, and the dependence of the width of the instability window on the concentration of the surfactant ions. Electrocapillary measurements clearly demonstrate that the interface becomes unstable, while the interfacial tension is positive, being higher than 20 mN m(-1). The electrocapillary curve exhibits the discontinuities at both ends of the instability window, indicating the similarity between the electrochemical instability and the phase transitions induced by the temperature, pressure, and chemical potential. The results from voltammetry and interfacial tension measurements for cationic surfactants support the idea that the electrochemical instability, so far reported in the transfer of anionic surfactants across the liquid/liquid interface, is one of intrinsic properties of the two-phase systems where the partition of surface-active ions takes place.  相似文献   

7.
The effect of buoyancy on spontaneous repeated nonlinear oscillations of surface tension, which appear at the free liquid interface by dissolution of a surfactant droplet under the interface, is considered on the basis of direct numerical simulation of the model system behavior. The oscillations are the result of periodically rising and fading Marangoni instability. The buoyancy force per se cannot lead to the oscillatory behavior in the considered system, but it influences strongly both the onset and decay of the instability and therefore, affects appearance and characteristics of the oscillations. If the surfactant solution density is smaller than the density of the pure liquid, then the buoyancy force leads to a considerable decrease of the induction period and the period of oscillations. The buoyancy force affects also the dependence of the oscillation characteristics on the system dimensions. The results of the simulations are compared with the available experimental data.  相似文献   

8.
This work investigated the effect of counter‐ions and interfacial turbulence on oxygen transfer from gas to liquid phase containing ionic surfactant, and experiments were performed in a mechanically stirred reactor with flat gas–liquid interface. Counter‐ions in terms of hydration ability and polarizability influence the interfacial coverage of ionic surfactants (i.e. cetytrimethylammonium bromide (CTAB) and cetytrimethylammonium chloride) with the same hydrocarbon chain length, producing hindrance but in different extent on oxygen transfer. The addition of electrolyte (NH4Br) substantially reduced the interfacial tension and surface charge of micelles (zeta potential) in CTAB system, and this salt effect greatly compressed interfacial double layer leading to gas transfer inhibition. The surface charge, aggregation number as well as stability of micelles formed above the critical micelle concentration could also alter interfacial configuration of surfactant layer reflected by gas absorption rate. Liquid turbulence was analyzed to decide the role of surfactant present in water on gas–liquid mass transfer, since Marangoni instability effect playing positive role should be taken into consideration under moderate liquid flow, while in turbulent system, contribution of Marangoni effect became overshadowed and consequently surfactant pose ‘barrier’ effect on gas transfer due to its surface active nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Instability due to surfactant redistribution in a liquid membrane system consisting of two solutions, namely source and acceptor, separated by a layer of immiscible liquid is studied theoretically and experimentally. The transfer of a surfactant from a source phase to an acceptor phase is often accompanied by spontaneous nonlinear oscillations of electrical potential and/or interfacial tension. The oscillations can be generated at each of the membrane interfaces. Here a mechanism of oscillation, which develops at the membrane/acceptor phase interface, is proposed on the basis of direct numerical simulation of the system evolution. Performed experimental studies confirm the theoretical results.  相似文献   

11.
The adsorption of a nonionic surfactant at a silica/room-temperature ionic liquid interface has been characterized on the basis of analytical data obtained through a combination of surface force measurements, in situ soft-contact atomic force microscope (AFM) images, and quartz crystal microbalance with dissipation monitoring (QCM-D) data. The surfactant employed in this study is a kind of phytosterol ethoxylate (BPS-20), and the ionic liquid selected here is aprotic 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI). This ionic liquid spontaneously forms solvation layers on silica, being composed of an Emim(+) cation layer and EmimTFSI ion pair layers. The addition of BPS-20 disrupts these solvation layers and suggests a surfactant layer adsorbed at the interface. This is the first report demonstrating the adsorption of nonionic surfactants at the solid/aprotic ionic liquid interface.  相似文献   

12.
The oscillatory behavior of a liquid membrane oscillator with anionic surfactant was investigated in order to understand the oscillation mechanism at the molecular level. As a theoretical framework, an approach based on chemical kinetics laws has been used. The chosen system involved nitromethane with 2,2(')-bipyridine as liquid membrane. The aqueous donor phase contained sodium oleate and butanol, while sodium chloride was added to the aqueous acceptor phase. It was established that the oscillations take place exclusively at the aqueous acceptor phase/membrane interface. Therefore, liquid membrane oscillators with anionic surfactants behave the same way as oscillators with cationic surfactants as to the location of oscillations. An oscillation mechanism involving three stages is proposed and confirmed by numerical simulations. The oscillations of electrical potential differences between the two aqueous phases are produced by sudden adsorption and desorption of anionic surfactant in solvated form and butanol at the acceptor/membrane interface. The whole process is controlled by the slow diffusion of these species across the liquid membrane. The chaotic character of the oscillations was demonstrated by Lyapunov exponents obtained from the strange attractor of the system.  相似文献   

13.
The oscillatory behavior of a nitromethane based liquid membrane oscillator was investigated to contribute to the oscillation mechanism at the molecular level. At the beginning the system contains three phases: the aqueous donor phase in which the cationic surfactant, hexadecyltrimethylammonium bromide and ethanol are present and the aqueous acceptor phase made up by sucrose solution separated by the liquid membrane containing a constant amount of picric acid. During experiment a new phase x is created between the liquid membrane and acceptor phase. It was established that the oscillations take place at the membrane/phase x and the phase x/acceptor phase interfaces. Five basic regions can be distinguished in the oscillation pattern. The molecular events provoking the oscillations of electric potential difference between the two aqueous phases involve essentially the diffusion of hexadecyltrimethylammonium bromide and ion pairs formed by the cation of the surfactant and the picrate anion to the vicinity of the membrane/phase x interface, sudden adsorption of these ion pairs at this interface in noncatalytic and autocatalytic steps, desorption of ion pairs from the membrane/phase x interface into phase x, diffusion of ion pairs to the vicinity of phase x/acceptor phase interface, and sudden adsorption at this interface followed by desorption to the aqueous acceptor phase. It is shown by numerical simulations that the proposed mechanism may account for the observed oscillations and for the species distribution throughout the system as found experimentally. This four-phase system behaves like two coupled oscillators.  相似文献   

14.
We study the micellar solubilization of three thermotropic liquid crystal compounds by immersing single drops in aqueous solutions of the ionic surfactant tetradecyltrimethylammonium bromide. For both nematic and isotropic drops, we observe a linear decrease of the drop size with time as well as convective flows and self-propelled motions. The solubilization is accompanied by the appearance of small aqueous droplets within the nematic or isotropic drop. At low temperatures, nematic drops expell small nematic droplets into the aqueous environment. Smectic drops show the spontaneous formation of filament-like structures which resemble the myelin figures observed in lyotropic lamellar systems. In all cases, the liquid crystal drops become completely solubilized, provided the weight fraction of the liquid crystal in the system is not larger than a few percent. The solubilization of the liquid crystal drops is compared with earlier studies of the solubilization of alkanes in ionic surfactant solutions.  相似文献   

15.
In this study, we demonstrate by AFM imaging that nonionic surfactants self-assemble into hemicylindrical aggregates at the interface between graphite and the room temperature ionic liquid ethylammonium nitrate. Like aqueous systems, surfactant first adsorbs in a tail-to-tail monolayer arrangement along one of the three symmetry axes of graphite, templating subsequent self-assembly into adsorbed hemicylinders. Longer surfactant tails and higher concentrations are required to produce hemicylindrical aggregates in the ionic liquid than in aqueous solutions.  相似文献   

16.
Emulsification of oils at liquid/liquid interfaces is of fundamental importance across a range of applications, including detergency. Adsorption and partitioning of the anionic surface active ions at the interface between two immiscible solutions is known to cause predictable chaos at the transfer potential region of the surfactant. In this work, the phenomenon that leads to the chaotic behaviour shown by sodium dodecylbenzene sulfonate (SDBS) at the water/1,2‐dichloroethane interface is applied to commercial surfactants and aqueous/glyceryl trioleate interface. Electrochemical methods, electrocapillary curves, optical microscopy and conductivity measurements demonstrated that at 1.5 mm of SDBS, surfactants are adsorbed at the interface and assemble into micelles, leading to interfacial instability. As the concentration of the anionic surfactant was enhanced to 8 and 13.4 mm , the Marangoni effect and the interfacial emulsification became more prominent. The chaotic behaviour was found to be dependent on the surfactant concentration and the electrolytes present.  相似文献   

17.
Periodic Marangoni convective instability has been observed in a biphasic system during the mass transfer of cetyltrimethylammonium bromide (CTAB) from an aqueous to a dichloromethane organic phase. Visualization of the convective fluxes was possible thanks to the CTAB crystals that are formed in the aqueous phase at a temperature below the Krafft point. Surface tension and electrical potential oscillations have been shown to be correlated with the fluid motion. Surface tension measurements, representative of the adsorption state, showed fast adsorption during the convective stage, followed by a slower desorption process in the quiet stage. To account for the electrical potential data, two components need to be taken into account. In the quiet stage, the signal was comparable to surface tension, and the main contribution would result from the electrical double layer formed at the interface by charged surfactants. In the convective stage, the electrical potential was furthermore related to the velocity of the fluid in the aqueous layer. Perturbations of the charge distribution in the Gouy-Chapman layer due to tangential flows could be at the origin of the phenomenon.  相似文献   

18.
The phenomena accompanying the dissolution of a surfactant droplet under the water/air interface covered by a spread monolayer are studied experimentally and theoretically. It is shown that the variation of the initial surface coverage changes the way of the system evolution. With respect to the character of changes of the interfacial tension with time one can distinguish between three different regimes which replace each other by increase of the initial surface coverage: (i) single oscillation followed by a long period of the monotonous decrease of the surface tension after which repeated non-linear oscillations develop spontaneously; (ii) repeated non-linear oscillations of the surface tension (without period of the monotonous decrease); (iii) monotonous decrease of the surface tension without any oscillation. The hydrodynamics of the observed regimes are discussed.  相似文献   

19.
The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号