首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We investigate the spectroscopic properties of the 1.5-microm emission from the (4)I(13/2)-->(4)I(15/2) transition of Er(3+) ions in bismuth-germanate-lead glasses for applications in broadband fiber amplifiers. The emission peak locates at 1532nm with a full width at half-maximum (FWHM) of approximately 65nm. The measured lifetime and the calculated emission cross-section of this transition are 3.3ms and 8.66x10(-21)cm(2), respectively. IR-to-green-upconversion occurs simultaneously upon excitation of the 1.5-microm emission with a commercially available 980nm laser diode. Effects of PbF(2) content on the thermal stability, structure and spectroscopic properties of Er(3+)-doped bismuth-germanate-lead glasses have been examined. We find that the substitution with PbF(2) provides a couple of potentials: shortening the UV cutoff band and decreasing the phonon energy of host glasses. Codoping of Yb(3+) significantly enhances both the green-upconversion and 1.5-microm emission intensity by means of a nonradiative Yb(3+)-->Er(3+) energy transfer. Energy transfer processes and nonradiative phonon-assisted decays could account for the population of the (2)H(11/2) level, which is an emitting level of the green-upconversion of Er(3+). The results indicate the possibility towards the development of bismuth-germanate-lead based glasses as photonics devices.  相似文献   

2.
Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass   总被引:3,自引:0,他引:3  
Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.  相似文献   

3.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

4.
A series of novel Er3+/Yb3+ co-doped 75TeO2-(25-x)Nb2O5-xWO3 (TNW: x=0, 3, 6, 9, 12, and 15 mol%) glasses have been prepared. Effect of WO3 on the thermal stability and spectroscopic properties of Er3+/Yb3+ co-doped niobic tellurite glasses have been investigated. With WO3 content increasing from 0 to 15 mol%, the fluorescence full width at half maximum (FWHM), the peak of stimulated emission cross-section (sigmaepeak), the measured lifetime (taum), and quantum efficiency (eta) change from 71 nm, 8.47x10(-21) cm2, 2.86 ms, 84.1% to 76 nm, 7.22x10(-21) cm2, 3.14 ms, 88.9%, respectively. The FWHM and sigmaepeak of Er3+ ions in different glass hosts were compared; the obtained data reveals that this new TNW4 glass may be a potentially useful candidate material host for broadband amplifiers.  相似文献   

5.
The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.  相似文献   

6.
A series of novel 70TeO2-(15-x)B2O3-xNb2O5-15ZnO-1wt.% Er2O3 (TBN x=0, 3, 6, 9, 12 and 15 mol%) tellurite glasses were prepared. The thermal stability, absorption spectra, emission spectra, and the lifetime of the (4)I(13/2) level of Er(3+) ions were measured and investigated. Three Judd-Ofelt intensity parameters Omega(t) (t=2, 4 and 6) (Omega(2)=(5.42-6.76)x10(-20)cm(2); Omega(4)=(1.37-1.73)x10(-20)cm(2); Omega(6)=(0.70-0.94)x10(-20)cm(2)) of Er(3+) ions were calculated by Judd-Ofelt theory. It is found that the Omega(6) first increases with the increase of Nb2O5 content from 0 to 6 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section (sigma(e)(peak)=(0.77-0.91)x10(-20)cm(2)) of Er(3+): (4)I(13/2)-->(4)I(15/2) transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=65-73 nm) of the (4)I(13/2)-->(4)I(15/2) transition of Er(3+) ions were measured. The results indicate that these new TBN glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

7.
The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra were carried out in order to investigate the structure of local arrangements in glasses. It is found that the thermal stability, absorption cross-section of Yb3+, emission intensity and lifetime of the 4I(13/2) level of Er3+ increase with increasing GeO2 content in the glass composition, while the fluorescence width at half maximum (FWHM) at 1.5 um of Er3+ is about 70 nm. The obtained data suggest that this system glass can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

8.
Glasses with composition 20CdO·xBi(2)O(3)·(79.5-x)B(2)O(3) (15≤x≤35, x in mol%) containing 0.5 mol% of Er(3+) ions were prepared by melt-quench technique (1150°C in air). The amorphous nature of the glasses was confirmed by X-ray diffraction. The spectroscopic properties of the glasses were investigated using optical absorption spectra and fluorescence spectra. The phenomenological Judd-Ofelt intensity parameters Ω(λ) (λ=2, 4, 6) were determined from the spectral intensities of absorption bands in order to calculate the radiative transition probability (A(R)), radiative life time (τ(R)), branching ratios (β(R)) for various excited luminescent states. Using the near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σ(e)) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition (4)I(13/2)→(4)I(15/2) at 1.506 μm in Er(3+)-doped cadmium bismuth borate glasses may be useful in optical communication.  相似文献   

9.
采用高温熔融法制备了一种新的Er3+/Yb3+共掺氟磷酸盐玻璃,测试和分析了其密度、吸收光谱以及荧光光谱,讨论了Er3+离子和Yb3+离子对光谱性质的影响.根据Judd-Ofelt理论计算了玻璃中Er3+离子的强度参数Ωt(t=2,4,6),分别为Ω2=4.36×10-20cm2,Ω4=1.35×10-20cm2,Ω6=0.79×10-20cm2,以及Er3+离子4I13/2能级荧光寿命τm=8.26ms.主发射峰1.53μm处半高宽(FWHM)为68nm.根据McCumber理论计算了Er3+的受激发射截面σe=8.5×10-21cm2.比较了不同玻璃基质中Er3+离子的光谱特性,结果表明:Er3+/Yb3+双掺氟磷酸盐玻璃在1.53μm附近具有较宽的半高宽和较大的受激发射截面,是一种高增益掺铒光纤放大器的理想介质材料.  相似文献   

10.
(100-x)TeO(2)-xNb(2)O(5) (x=5-20) niobic tellurite glasses doped with 0.5 mol.% Er(2)O(3) were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (rho), and glass transition temperature (T(g)) of bulk glasses increase with the Nb(2)O(5) content. The Vickers microhardness (H(v)) of bulk glass in niobic tellurite glasses also increases with the Nb(2)O(5) content. The values (2.5-3.2GPa) of H(v) in the niobic tellurite glasses are 47-88% larger than that (1.7GPa) in TZN glass. The effect of Nb(2)O(5) content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t=2, 4, 6), fluorescence spectra and the lifetimes of Er(3+):I(13/2) level were also investigated, and the stimulated emission cross-section was calculated from McCumber theory. With increasing Nb(2)O(5) content in the glass composition, the Omega(t) (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) of I(13/2) of Er(3+) increase, while the (4)I(13/2) lifetimes of Er(3+) decreases. Compared with TZN glass, the gain bandwidth properties of Er(3+)-doped TeO(2)-Nb(2)O(5) glass is much larger than in tellurite glass based TeO(2)-ZnO-Na(2)O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO(2)-Nb(2)O(5) glasses are better choice as a practical available host material for broadband Er(3+)-doped amplifier.  相似文献   

11.
Er(3+)/Yb(3+) co-doped 60Bi(2)O(3)-(40 - x)B(2)O(3)-xGeO(2) (BBG; x=0, 5, 10, 15 mol%) glasses that are suitable for fiber lasers, amplifiers have been fabricated and characterized. The absorption spectra, emission spectra, and lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition were measured and calculated. With the substitution of GeO(2) for B(2)O(3), both Delta lambda(eff) and sigma(e) decrease from 75 to 71 nm and 9.88 to 8.12 x 10(-21) cm(2), respectively. The measured lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition increase from 1.18 to 1.5 ms and 36.2% to 43.2%, respectively. The emission spectra of Er(3+):(4)I(13/2) --> (4)I(15/2) transition was also analyzed using a peak-fit routine, and an equivalent four-level system was proposed to estimate the stark splitting for the (4)I(15/2) and (4)I(13/2) levels of Er(3+) in the BBG glasses. The results indicate that the (4)I(13/2) --> (4)I(15/2) emission of Er(3+) can be exhibit a considerable broadening due to a significant enhance the peak A, and D emission.  相似文献   

12.
The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.  相似文献   

13.
Crystal of Yb3+-doped Ba3Gd(BO3)3 has been grown by the Czochralski method. The spectroscopic characterizations have been investigated at room temperature. The Yb3+:Ba3Gd(BO3)3 crystal exhibits broad absorption at 976nm with FWHM of 7nm and large overall spitting of 2F7/2 manifold (823cm-1). The absorption and emission cross sections are 5.09×10-21cm2 at 976nm and 0.97×10-21cm2 at 1040nm,respectively. The fluorescence lifetime is 2.84 ms.  相似文献   

14.
The Er3+/Yb3+-codoped 70TeO2-5Li2O-10B2O3-15GeO2 glass was prepared. The thermal stability, absorption spectra, emission spectra and up-conversion spectra were measured and investigated. The Judd-Ofelt analysis based on absorption spectra was performed in order to determine the Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, radiative lifetime and branching ratios of several Er3+ transitions. It was found that this studied glass has good thermal stability, broad fluorescence full width at half maximum (FWHM), large stimulated emission cross-section and strong up-conversion emissions at about 532, 546 and 659 nm, corresponding to the 2H(11/2)-->4I(15/2), 4S(3/2)-->4I(15/2) and 4F(9/2)-->4I(15/2) transitions of Er3+, respectively under the excitation at 970 nm. The results suggest that this Er3+/Yb3+-codoped germano-tellurite glass may be a potentially useful material for developing potential amplifiers and up-conversion optical devices.  相似文献   

15.
The Er3+/Yb3+ co-doped glasses with compositions of xBi2O3-(65-x)P2O5-4Yb2O3-11Al2O3-5BaO-15Na2O (where x=0, 2.5, 5, 7.5 and 10 mol%) were prepared using the normal melt quench technique. The optical absorption spectra of the glasses were recorded in the wavelength range 300-1700 nm. The effect of Bi2O3 content on the thermal stability and absorption spectra of glasses was investigated. In addition, the Judd-Ofelt parameters and oscillator strengths were calculated by employing Judd-Ofelt theory. It was observed that the positions of the fundamental absorption edge and cut-off wavelength shifted towards red as the content of Bi2O3 increased. However, there were no red shifts found both in the peak wavelength and in the center of mass wavelength of all absorption bands with Bi2O3 content increasing. The results of Judd-Ofelt theory analysis showed that Judd-Ofelt parameters Omega t (t=2, 4, 6) changed sharply when Bi2O3 concentration exceeded 5 mol%. The variation trends of experimental oscillator strength were similar with those of Judd-Ofelt parameters as function of Bi2O3 concentrations. Moreover, differential scanning calorimetry experiments showed that the increases of Bi2O3 content weakened the network structure and then lowered the thermal stability of the glasses. The spontaneous emission probability A rad, branching ratio beta and the radiative lifetime tau rad were also calculated and analyzed. The stimulated emission cross-section of Er3+ was calculated according to the McCumber theory. It was found that the stimulated emission cross-section of Er3+ was monotonically increases with Bi2O3 content increasing.  相似文献   

16.
The optical transition probability of Tm3+ (7.0 mol%) doped PLZT was investigated because of its great interest in many fields such as optical communications in the mid-infrared waveband and medical instrumentation. The absolute intensities of its forced electric dipole transitions between 420 and 2000 nm were measured. According to Judd-Ofelt (J-O) theory, three phenomenological parameters, ?2=9.133£10-21 cm2, ?4=1.529£10-21 cm2 and ?6=1.712£10-21 cm2, were obtained. The J-O intensity parameters were used to calculate the radiative lifetime (7.493 ms) of the excited 3F4 level. The stimulated emission cross-section for the 3F4!3H6 transition was also evaluated. Analysis reveals that Tm3+-doped PLZT is promising for use as e±cient optical amplification devices or zero-loss electro-optical devices.  相似文献   

17.
Transparent crystallized glasses consisting of nonlinear optical Ba(2)TiSi(2)O(8) nanocrystals are prepared in Eu(2)O(3)-, Nd(2)O(3)-, and Er(2)O(3)-doped 40BaO-20TiO(2)-40SiO(2) glasses by a conventional heat treatment method in order to clarify the optical properties of rare-earth (RE) ions in nanocrystals. The electronic polarizabilities of crystallized glasses are evaluated from the values of density and refractive index, and are found to decrease due to nanocrystallization, which indicates that the chemical bonding state in the crystallized glasses is more covalent compared to the precursor glasses. It is proposed from x-ray diffraction analyses and photoluminescence spectra of Eu(3+) ions that RE ions such as Nd(3+) and Eu(3+) are incorporated into Ba(2)TiSi(2)O(8) nanocrystals. The Judd-Ofelt parameters, Omega(t) (t=2, 4, and 6), of Nd(3+) and Er(3+) ions are evaluated from optical absorption spectra. It is observed that the Omega(2) parameter of Nd(3+) and Er(3+) increases largely due to nanocrystallization, suggesting that the site symmetry of Nd(3+) and Er(3+) ions in nanocrystallized glasses is largely distorted due to their incorporations into the Ba(2+) sites in Ba(2)TiSi(2)O(8) nanocrystals. The change in the Omega(4) and Omega(6) parameters due to nanocrystallization is small. It is proposed that nonlinear optical Ba(2)TiSi(2)O(8) nanocrystals including RE ions would have a high potential as active optical materials.  相似文献   

18.
The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.  相似文献   

19.
Nd(2)O(3)-doped 70Bi(2)O(3)-20B(2)O(3)-10SiO(2)-xNd(2)O(3) (x=0.1, 0.3, 0.5, 0.7, 1.0, 1.5 mol%) bismuth glasses were prepared by the conventional melt-quenching method, and the Nd(3+):(4)F(3/2)-->(4)I(13/2) fluorescence properties had been studied for different Nd(3+) concentrations. The Judd-Ofelt analysis for Nd(3+) ions in bismuth boron silicate glasses was also performed on the base of absorption spectrum. The transition probabilities, excited state lifetimes, the fluorescence branching ratios, quantum efficiency and the stimulated emission cross-sections of (4)F(3/2)-->(4)I(13/2) transition were calculated and discussed. Based on the electric dipole-dipole interaction theory, the interaction parameters: C(DD), for the energy migration rate (4)F(3/2), (4)I(9/2)-->(4)F(3/2), (4)I(9/2) and C(DA), for cross-relaxation rate (4)F(3/2), (4)I(9/2)-->(4)I(15/2), (4)I(15/2), and/or (4)F(3/2), (4)I(9/2)-->(4)I(13/2), (4)I(15/2) in bismuth boron silicate glasses were about 18.4 x 10(-40)cm(6)/s and 3.4 x 10(-40)cm(6)/s, respectively.  相似文献   

20.
Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号