首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
应用密度泛函理论(DFT),通过CpRu(PH_3)_2SH(Cp=环戊二烯基)与HNCS的模型化反应,探讨了CpRu-(PPh_3)_2SH与RNCS(R=Ph,l-naphthyl)反应生成CpRu(PPh_3)S_2CNHR的两种可能的反应机理.一种可能的机理是,-个PH_3配体先从反应物CpRu(PH_3)_2SH解离出来,得到一个16e中间体,然后经过一个氢转移反应,得到产物:另一种可能的机理是,先经过一个氢转移反应,然后一个PH_3配体再从会属中心解离出来,得到产物.通过分析两种机理的势能曲线发现,反应的决速步骤为从硫原子到氮原子的氢迁移过程.第一种反应机理中反应的最高活化能明显比第二种反应机理的最高活化能高.因此,我们预测反应倾向于先发生氢迁移,然后配体PH_3再从金属中心上解离出来.在该反应机理中,尽管和产物相连的中间体稳定性稍高于产物,由于熵效应致使最终产物仍然是实验中所得到的产物.  相似文献   

2.
采用BMC-CCSD//B3LYP/6-311G(d,p)方法对CH3SH+CN反应机理进行了详细的理论研究.反应中涉及的各稳定点的构型、振动频率和零点能在B3LYP/6-311G(d,p)水平下计算得到,计算结果表明,该反应存在两种反应机理,5条可能的反应通道.SN2机理由于能垒太高,与直接氢抽提机理相比可以忽略.该反应的最可行通道为CN中的C原子进攻SH中的H原子经由一个前期和一个后期分子络合物生成产物CH3S和HCN.计算得到的反应焓变与已有实验值非常吻合.  相似文献   

3.
采用密度泛函方法对3-甲硫基-4-氰基-5-氨基吡唑与碘甲烷反应的机理进行了研究. 提出了两种可能的反应途径: 反应途径Ⅰ为反应物先脱去吡唑上的质子, 生成阴离子中间物, 然后碘甲烷分别进攻中间物吡唑环上的2个氮原子, 生成两种异构产物; 反应途径Ⅱ为反应物通过分子间氢转移存在两种异构体, 碘甲烷直接进攻每个异构反应物吡唑上的氮原子, 形成中间物, 然后脱去碘化氢, 生成产物. 计算结果表明, 途径Ⅱ应为主要反应途径. 还找出了两种异构产物间甲基迁移反应的过渡态, 得出该反应的活化能为278.5 kJ/mol, 在常温下甲基迁移反应不容易进行.  相似文献   

4.
应用密度泛函理论(DFT)对CH3SS与OH自由基单重态反应机理进行了研究.在B3PW91/6-311+G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证.在QCISD(T)/6-311++G(d,p)水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,CH3SS与OH反应为多通道反应,有5条可能的反应通道.反应物首先通过不同的S—O键相互作用形成具有竞争反应机理的中间体IM1和IM2.再经过氢迁移、脱氢和裂解等机理得到主要产物P1(CH2SS+H2O),次要产物P2(CH2S+HSOH),P3(CH3SH+1SO)和P4(CH2SSO+H2),其中最低反应通道的势垒为174.6kJ.mol-1.  相似文献   

5.
采用密度泛函理论(DFT)中的B3LYP方法对CuI/BtH催化苯硫酚与对甲氧基溴苯C–S偶联合成(4-甲氧基)(苯基)硫醚反应机理进行了理论研究.在6-31+G(d)基组水平上,全参数优化了气相条件和N,N-二甲基甲酰胺(DMF)溶剂化条件下反应机理中所有反应物、过渡态、中间体和产物构型,对优化后各化合物的构型在B3LYP/6-311++G(d,p)基组下进行了单点能计算和零点能矫正,通过能量和振动频率分析以及内禀反应坐标(IRC)计算证实了中间体和过渡态的合理性.并且在优化计算相同基组水平上,应用自然键轨道(NBO)理论和分子中的原子(AIM)理论分析了复合物的成键特征和轨道间相互作用.在CuI单独催化此反应的机理中,计算得到一条反应路径,控制步骤所需活化能是180.49 kJ/mol(sol).而当CuI/BtH共同催化反应时,计算得到两条反应通道IA和IB,其中IA为最优反应通道,控制步骤所需活化能为101.77kJ/mol(sol);IB反应通道控制步骤活化能为143.78 kJ/mol(sol).配体苯并三唑(BtH)加入反应有效地降低了反应控制步骤所需活化能,同时有利于产物和催化剂的分离,这与实验所得结论一致.  相似文献   

6.
在B3LYP/6-311++G(2df,p)水平下对单分子水参与下的CH_2SH+NO_2反应的微观机理进行了研究.为了获得更准确的能量信息,采用HL复合方法和CCSD(T)/aug-ccpvtz方法进行单点能校正.结果表明,加入单分子水后的CH_2SH+NO_2反应体系,共经过10条不同的反应路径,得到6种反应产物.与裸反应(CH_2SH+NO_2)相比,水分子在反应中起到了明显的正催化作用.不仅使生成产物trans-HONO的能垒(-52.84kJ·mol~(-1))降低了176.94kJ·mol~(-1),而且不需经过复杂的重排和异构化过程便可得到产物cis-HONO.在生成产物cis-HONO通道(Path3和Path4)中,活化能垒分别为143.65和126.70kJ·mol~(-1),而其裸反应的活化能垒却高达238.34kJ·mol~(-1).生成HNO_2的通道中(Path5和Path6)活化能垒分别为295.23和-42.19kJ·mol~(-1).其中Path6的无势垒过程使HNO_2也成为该反应的主要产物.另外,单分子水还可通过氢迁移的方式直接参与CH_2SH+NO_2的反应,活化能垒(TS7-TS10)分别为-10.62,151.03,186.22和155.10kJ·mol~(-1).除直接抽氢通道中的(Path8-Path10)外,其余反应通道均为放热反应,在热力学上是可行的.  相似文献   

7.
采用CCSD/6-311++G(d,p)//B3LYP/6-311++G(d,p)方法研究了HCHO与卤素原子X(X=F、Cl、Br)的反应机理. 计算结果表明, 卤素原子X(X=F、Cl、Br)主要通过直接提取HCHO中的H原子生成HCO+HX(X=F、Cl、Br). 另外还可以生成稳定的中间体, 中间体再通过卤原子夺氢和氢原子直接解离两个反应通道分别生成HCO+HX(X=F、Cl、Br)和H+XCHO(X=F、Cl、Br). 其中卤原子夺氢通道为主反应通道, HCO和HX(X=F、Cl、Br)为主要的反应产物; 且三个反应的活化能均较低, 说明此类反应很容易进行, 计算结果与实验结果符合很好. 电子密度拓扑分析显示, 在HCHO+X反应通道(b)中出现了T型结构过渡态, 结构过渡态(STS)位于能量过渡态(ETS)之后. 并且按F、Cl、Br的顺序, 结构过渡态出现得越来越晚.  相似文献   

8.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

9.
在密度泛函理论中的B3LYP/6-31G(d,p)水平上研究了分子筛催化戊烯骨架异构的微观作用机制,分别对各个基元反应进行了内禀反应坐标(IRC)解析。结果表明:戊烯的骨架异构存在2种反应机理:烷氧基中间体机理和类甲基环丙烷中间体机理。而烷氧基中间体机理又包括2个反应途径,1个是甲基迁移,另1个是乙基迁移。因此,整个异构反应存在3个反应途径。甲基迁移机理和乙基迁移机理都含有3个基元步骤,其中速控步骤分别是甲基迁移和乙基迁移,对应的活化能分别为206.17和207.31 kJ·mol-1,二者几乎相等,表明2个反应途径从能量的角度来说是互相竞争的。类甲基环丙烷中间体机理分2步,碳链扭转和甲基的迁移,反应中间体具有高离子性和高能量的物种。反应速控步骤是碳链扭转反应,其活化能是147.93 kJ·mol-1,明显低于甲基迁移和乙基迁移2个反应途径的能垒,意味着类甲基环丙烷中间体的反应途径更容易发生。  相似文献   

10.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

11.
The P4 molecule bound to ruthenium as an eta1-ligand in [CpRu(PPh3)2(eta1-P4)]Y (Y = PF6, CF3SO3) undergoes an easy reaction with water in exceedingly mild conditions to yield PH3, which remains coordinated to the [CpRu(PPh3)2] fragment, and oxygenated derivatives.  相似文献   

12.
The structures and energies of reactant, product, intermediate, transition and second order saddlepoint in the transfer reaction of inner hydrogen atoms in porphine(PH2), m-tetra-fluorine porphyrin(m-TFPH2), β-octa-fluorine-porphyrin (β-OFPH2) and m-tetra-fluorine, β-octa-fluorine-porphyrin(12FPH2) were calculated by using B3LYP/6-31G** method under certain symmetry restriction. In the transfer reaction of inner hydrogen atoms in all various matters, the comparison of structures and the energies shows that the probabilities of asynchronous mechanism are larger than that of synchronous mechanism via a second-order saddle-point, and substitutents to porphyrin in hydrogen migration have no influence on mechanism choice. But the substitutents can affect speed differences between the synchronous mechanisms and the asynchronous mechanisms. In addition, fluoro substitutents decrease speeds of positive and negative reactions in asynchronous mechanisms, which is in agreement with chemical intuition.  相似文献   

13.
The facile synthesis of the metallaheteroborane [8,8-(PPh 3) 2- nido-8,7-RhSB 9H 10] ( 1) makes possible the systematic study of its reactivity. Addition of pyridine to 1 gives in high yield the 11-vertex nido-hydridorhodathiaborane [8,8,8-(PPh 3) 2H-9-(NC 5H 5)- nido-8,7-RhSB 9H 9] ( 2). 2 reacts with C 2H 4 or CO to form [1,1-(PPh 3)(L)-3-(NC 5H 5)- closo-RhSB 9H 8] [L = C 2H 4 ( 3), CO ( 4)]. In CH 2Cl 2 at reflux temperature 2 undergoes a nido to closo transformation to afford [1,1-(PPh 3) 2-3-(NC 5H 5)- closo-1,2-RhSB 9H 8] ( 5). Reaction of 2 with alkenes leads to hydrogenation and isomerization of the olefins. NMR spectroscopy indicates the presence of a labile phosphine ligand in 2, and DFT calculations have been used to determine which of the two phosphine groups is labile. Rationalization of the hydrogenation mechanism and the part played by the 2 --> 3 nido to closo cluster change during the reaction cycle is suggested. In the proposed mechanism the classical hydrogen transfer from hydride metal complexes to olefins occurs twice: first upon coordination of the alkene to the rhodium centre in 2, and second concomitant with formation of a closo-hydridorhodathiaborane intermediate by migration of a BHB-bridging hydrogen atom to the metal. Reaction of H 2 with 3 or 5 regenerates 2, closing a reaction cycle that under catalytic conditions is capable of hydrogenating alkenes. Single-site versus cluster-bifunctional mechanisms are discussed as possible routes for H 2 activation.  相似文献   

14.
The reaction mechanism of the Pd-catalyzed benzyl/allyl coupling of benzyl chloride with allyltributylstannan, resulting in the dearomatization of the benzyl group, was studied using density functional theory calculations at the B3LYP level. The calculations indicate that the intermediate (eta(3)-benzyl)(eta(1)-allyl)Pd(PH(3)) is responsible for the formation of the kinetically favored dearomatic product. Reductive elimination of the dearomatic product from the intermediate occurs by coupling the C-3 terminus of the eta(1)-allyl ligand and the para-carbon of the eta(3)-benzyl ligand in (eta(3)-benzyl)(eta(1)-allyl)Pd(PH(3)). For comparison, various C-C coupling reaction pathways have also been examined.  相似文献   

15.
The ruthenium bis-acetate complex Ru(κ(2)-OAc)(2)(PPh(3))(2) reacts with HC≡CPh to afford the vinylidene-containing species Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2). An experimental study has demonstrated that this reaction occurs under very mild conditions, with significant conversion being observed at 255 K. At lower temperatures, evidence for a transient metallo-enol ester species Ru(κ(1)-OAc)(OC{Me}O-C=CHPh)(PPh(3))(2) was obtained. A comprehensive theoretical study to probe the nature of the alkyne/vinylidene tautomerisation has been undertaken using Density Functional Theory. Calculations based on a number of isomers of the model system Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHMe)(PH(3))(2) demonstrate that both the η(2)(CC) alkyne complex Ru(κ(1)-OAc)(κ(2)-OAc)(η(2)-HC≡CMe)(PH(3))(2) and the C-H agostic σ-complex Ru(κ(1)-OAc)(κ(2)-OAc)(η(2){CH}-HC≡CMe)(PH(3))(2) are minima on the potential energy surface. The lowest energy pathway for the formation of the vinylidene complex involves the intramolecular deprotonation of the σ-complex by an acetate ligand followed by reprotonation of the subsequently formed alkynyl ligand. This process is thus termed a Ligand-Assisted Proton Shuttle (LAPS). Calculations performed on the full experimental system Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2) reinforce the notion that lowest energy pathway involves the deprotonation/reprotonation of the alkyne by an acetate ligand. Inclusion of the full ligand substituents in the calculations are necessary to reproduce the experimental observation of Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2) as the thermodynamic product.  相似文献   

16.
The mechanism of formation of an eta4-cyclobutadiene complex from a metallacycle, generated by oxidative coupling of two acetylenes with the fragments CpRuCl, [CpRu(PH3)]+, CpCo, and CpRh, was investigated by means of DFT/B3LYP calculations. Two distinct pathways can be envisaged. 1) A multistep reaction, which can be denoted the Vollhardt mechanism, proceeding via a cyclopropenyl carbene and a tetrahedrane-type intermediate. 2) A one-step transformation involving the formation of a third M-C bond with rearrangement of the metallacyclic ring. Although path 2 is definitely favored over path 1, both pathways are energetically prohibitive unless substituents are present on the acetylene. For the CpRuCl system with HC triple bond CR the barrier varies with R in the series H approximately Ph>Me>SiMe3. On going from H to SiMe3, the barrier for path 2 drops from 41.1 to 26.8 kcal mol(-1). This latter value is already reachable, in agreement with experiment. Whereas the reaction mechanisms involving the fragments CpCo, CpRh, and CpRuCl are very similar (but not identical owing to the additional ligand in CpRuCl), those of [CpRu(PH3)]+ reveal a modification with serious consequences. In both paths 1 and 2, the originally planar metallacycle experiences first a bending distortion induced by the sigma-donor strength of P (in contrast to Cl), which compensates the loss of electrons from the ring brought about by bending. The bent metallacycle is already electronically asymmetric and thus the further course of the reaction is facilitated.  相似文献   

17.
The B3LYP hybrid density functional method has been carried out to study theoretically the mechanism of Pd(0)-catalyzed alkyne cyanoboration reaction. Both the intermolecular and intramolecular alkyne cyanoboration reactions were studied. For each reaction, three paths were proposed. In path A of each reaction, the first step is B-CN bond oxidative addition to bisphosphine complex Pd(PH(3))(2), in path B of each reaction, the first step is alkyne coordination to bisphosphine complex Pd(PH(3))(2), and in path C of each reaction, the first step is the PH(3) dissociation from Pd(PH(3))(2) to form monophosphine complex Pd(PH(3)). For both reactions, path B is favored. The dissociation and recoordination of phosphine ligand are found to be very important for the entire reaction, in agreement with the experiment. In both intermolecular and intramolecular cyanoboration reactions, cyano migration is preferred to take place compared with alkenylboryl migration for the formation of the final cis products. The rate-determining step for both intermolecular and intramolecular cyanoboration reactions is found to be the insertion of carbon-carbon triple bond into Pd-B bond with the activation energy of 38.4 and 34.3 kcal/mol relative to the initial reactants, respectively. These values suggest that intramolecular reaction is relatively easy to occur.  相似文献   

18.
The reaction of [CpRu(PPh(3))(2)Cl] (1) with half an equivalent of P(4) or P(4)S(3) in the presence of AgCF(3)SO(3) as chloride scavenger affords the stable dimetal complexes [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(4))][CF(3)SO(3)](2).3 CH(2)Cl(2) (2) and [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(apical)-P(basal)-P(4)S(3))][CF(3)SO(3)](2).0.5 C(7)H(8) (3), in which the tetrahedral P(4) and mixed-cage P(4)S(3) molecules are respectively bound to two CpRu(PPh(3))(2) fragments through two phosphorus atoms. The coordinated cage molecules, at variance with the free ligands, readily react with an excess of water in THF under mild conditions. Among the hydrolysis products, the new, remarkably stable complexes [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(2)H(4))][CF(3)SO(3)](2) (4) and [CpRu(PPh(3))(2)(eta(1)-PH(2)SH)]CF(3)SO(3) (8) were isolated. In the former, diphosphane, P(2)H(4), is coordinated to two CpRu(PPh(3))(2) fragments, and in the latter thiophosphinous acid, H(2)PSH, is coordinated to the metal centre through the phosphorus atom. All compounds were characterised by elemental analyses and IR and NMR spectroscopy. The crystal structures of 2, 3, 4 and 8 were determined by X-ray diffraction.  相似文献   

19.
A novel alkenylation reaction of pyridine is developed. Heating a cationic ruthenium vinylidene complex [CpRu(=C=CHR)(PPh(3))(2)]PF(6) in pyridine at 100-125 degrees C for 24 h affords (E)-2-alkenylpyridine. Initially, pyridine coordinates to ruthenium by displacement of one of the phosphine ligands. Then, [2 + 2] heterocycloaddition occurs to form a four-membered ruthenacyclic complex. Deprotonation of the beta-hydrogen affords a neutral pi-azaallyl complex. Protonolysis furnishes the product. As a result, a vinylidene group is inserted into the alpha C-H bond of pyridine. The alkenylation reaction is made catalytic in ruthenium by the use of (alkyn-1-yl)silane as the vinylidene source. Treatment of (alkyn-1-yl)trimethylsilane with pyridine in the presence of a cationic ruthenium complex [CpRu(PPh(3))(2)]PF(6) affords the corresponding (E)-2-alkenylpyridine in good yield in a regio- and stereoselective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号