首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Sun J  Gale BJ  Reid DT 《Optics letters》2007,32(11):1396-1398
By using a dual-color femtosecond optical parametric oscillator (OPO), a coherent waveform was synthesized from two coresonant near-infrared signal pulses whose center wavelengths had a separation of 100 nm. Immediately after the OPO cavity the pulses had independent carrier-envelope phase-slip frequencies, and synthesis was achieved by shifting these frequencies using an acousto-optic modulator driven by an internally generated difference frequency. Soliton self-frequency shifted pulses from a photonic crystal fiber and a cross-correlation frequency-resolved optical gating (XFROG) measurement were used to analyze the result of the synthesis experiment and revealed that the synthesized waveform was a train of high-contrast 30 fs pulses.  相似文献   

2.
Xu L  Zhong X  Zhu J  Han H  Wei Z 《Optics letters》2012,37(9):1436-1438
We demonstrated on a synchronously pumped femtosecond optical parametric oscillator with dual-signal-wavelength operation. Our results showed that the dual-wavelength oscillation is not determined by the net-zero dispersion but rather by the balance of phase matching and group-velocity mismatching caused by the nonlinear crystal between the two signals. With a MgO-doped periodically poled lithium niobate as the nonlinear crystal, total signal power up to 530 mW was obtained by using a 2.6 W femtosecond Ti:sapphire laser at the central wavelength of 808 nm as the pump source, corresponding to a conversion efficiency of 20.4%. By slightly adjusting the cavity length, the signal wavelength can be broadly tuned from 1001 to 1438 nm and the dual-wavelength tuning range is from 1001 to 1204 nm.  相似文献   

3.
Min CK  Joo T 《Optics letters》2005,30(14):1855-1857
We demonstrate a high-energy near-infrared cavity-dumped femtosecond optical parametric oscillator (OPO) based on periodically poled lithium niobate. The laser generates 90 nJ pulses at a repetition rate of up to 1 MHz when synchronously pumped by 800 mW output from a femtosecond Ti:sapphire laser. The laser is broadly tunable from 1.0 to 1.5 microm in the signal branch, with a pulse duration of < 60 fs at 1.2 microm. High intracavity power is achieved by running the laser in the regime of positive group-velocity dispersion.  相似文献   

4.
We report a flexible technique for threshold reduction and output power enhancement in synchronously pumped optical parametric oscillators (SPOPOs) based on synchronized retroreflection of the undepleted pump using a collimating system and a delay line, which allows easy and independent adjustment of the spatial and temporal overlap of the retroreflected beam in the nonlinear crystal. The method permits initial synchronization of the forward and retroreflected pump by interferometry, providing threshold reduction before oscillation is initiated. We demonstrate the technique in a femtosecond SPOPO based on BiB3O6, where a threshold reduction of 22% and an output power enhancement of 70% are achieved compared with single-pass pumping, with no detrimental effect on the spectral and temporal characteristics of the output pulses.  相似文献   

5.
We report on a femtosecond optical parametric oscillator (OPO) with a repetition rate of 1 GHz, which is 12 times that of the pump laser used. We also introduce a novel method for operating an OPO with a high harmonic repetition rate which is not determined by the cavity length of the OPO, but rather the cavity length difference between the OPO and its pump laser. Operation of an OPO at 4-times the harmonic repetition rate has been carried out to show the feasibility of this method. The new approach paves the way for constructing a femtosecond OPO working at repetition rates of 10 GHz, or higher, when the pump laser used has a relatively low repetition rate. Received: 26 October 2001 / Revised version: 11 Januar 2002 / Published online: 14 March 2002  相似文献   

6.
We demonstrated a stable degenerate synchronously pumped femtosecond optical parametric oscillator (SPOPO) as a divide-by-2 subharmonic generator. The SPOPO exhibited passive all-optical self-phase-locking between the pump and signal/idler and thus required no external electronic feedback to produce the phase-locked subharmonic. We employed a type I phase-matched, 1-mm-long, periodically poled MgO:LiNbO3 crystal as the nonlinear gain element and an 80 MHz mode-locked Ti:sapphire laser with 180 fs pulses tuned at 775 nm as the pump. The SPOPO generated transform-limited 70 fs phase-locked output pulses centered at 1550 nm. The self-phase-locking operation was confirmed by separate beat-note measurement techniques with respect to the pump laser and with respect to an external cw laser.  相似文献   

7.
The phase-matching condition in a fiber is discussed. A balance among the different orders of fiber dispersion can be found to achieve a widely tuning modulation instability gain for pumping around the normal dispersion regime. Three coupled nonlinear wave equations are used to simulate the femtosecond fiber optical parametric oscillator. The numerical results show that, through appropriate choice of dispersion, femtosecond pulses with a 180-nm tunable range can be generated when pump wavelength near a fiber’s zero-dispersion wavelength is tuned only 7 nm. Further tuning is limited by the walk-off between the pump and the signal pulses.  相似文献   

8.
We demonstrate, for the first time to our knowledge, an optical parametric amplifier directly pumped by a femtosecond oscillator. Wavelength-tunable pulses in the ranges 0.65-0.85 microm (signal) and 1.4-2.5 microm (idler) are generated at a repetition frequency of 1 MHz. For pumping the beta-barium borate crystal we use a microjoule Yb:KY(WO4)2 femtosecond oscillator with cavity dumping. Pulses with 30 nJ of energy and a duration of 16 fs are achieved from a supercontinuum seed generated in a sapphire plate.  相似文献   

9.
We report a femtosecond optical parametric oscillator (OPO) based on the nonlinear material BiB3O6. The OPO is synchronously pumped in the blue by the second harmonic of a Kerr-lens-mode-locked Ti:sapphire laser. It can provide wide and continuous tuning across the entire green-yellow-orange-red spectral range with a single crystal and a single set of mirrors. Using a 500 microm BiB3O6 crystal and collinear type I (e+e->o) phase matching in the optical yz plane, a signal wavelength range of 480-710 nm is demonstrated with angle tuning at room temperature at average output powers of 270 mW. With 220 fs blue pump pulses, near-transform-limited signal pulses of 120 fs duration have been obtained at 76 MHz repetition rate.  相似文献   

10.
We describe progress in the measurement and control of the carrier-envelope phase-slip frequencies of pulses generated by a femtosecond optical parametric oscillator. Example applications of such control are presented and include the generation of a frequency comb spanning nearly three optical octaves, and the creation of a train of 30-fs pulses via coherent pulse synthesis. Future prospects for frequency combs based on femtosecond optical parametric oscillators are discussed.  相似文献   

11.
A femtosecond optical parametric oscillator synchronously pumped by a Ti:Sapphire oscillator is reported. By the cavity length tuning, the signal wavelength is continuously tuned from 1000 to 1200 nm. The average output power of 32 mW is obtained at 1053 nm. The pulse width is measured to be 342 fs by intensity autocorrelation method. In addition, we observed bichromatic emission during the cavity length tuning process. Supported by the National High Technology Program Research and Development Program of China, the National Natural Science Foundation of China (Grant Nos. 60490280 and 10804128), and the National Basic Research Program of China (Grant No. 2007CB815104)  相似文献   

12.
Kobayashi Y  Torizuka K 《Optics letters》2001,26(16):1295-1297
We have generated femtosecond subharmonic pulses by using an optical parametric oscillator. The optical frequencies of the idler and the signal are one third and two thirds, respectively, of the optical frequency of the pump pulse. The carrier phase of the signal pulse relative to that of the pump pulse was locked by electronic feedback. The carrier-envelope phase slip frequency of the signal pulse relative to that of the pump was locked to F/6 , where F is defined as the repetition frequency.  相似文献   

13.
We demonstrate a harmonically pumped femtosecond optical parametric oscillator(OPO)laser using a frequency-doubled mode-locked Yb:KGW laser at a repetition rate of 75.5 MHz as the pump laser.Based on a bismuth borate nonlinear crystal,repetition rates up to 1.13 GHz are realized,which is 15 times that of the pump laser.The signal wavelength is tunable from 700 nm to 887 nm.The maximum power of the signal is 207 m W at the central wavelength of 750 nm and the shortest pulse duration is 117 fs at 780 nm.The beam quality(M^2 factor)in the horizontal and vertical directions of the output beam are 1.077 and 1.141,respectively.  相似文献   

14.
We report what is to our knowledge the first demonstration of a femtosecond optical parametric oscillator based on chirped-pulse frequency conversion in a long crystal of aperiodically poled potassium titanyl phosphate. The minimum pump threshold power was 15 mW, and a signal slope efficiency of 35% was achieved. Continuous tuning from 1190 to 1450 nm was obtained for an average pump power of 800 mW.  相似文献   

15.
A femtosecond all-fiber laser source incorporating a cw mode-locked Yb-doped silica fiber oscillator and amplifier has been used to synchronously pump an optical parametric oscillator based on periodically poled lithium niobate. The signal output, consisting of 330-fs pulses at a 54-MHz repetition rate and average powers up to 90 mW, was tuned from 1.55 to 1.95microm , with a corresponding idler range of 2.30-3.31microm .  相似文献   

16.
A β-barium borate (BBO) femtosecond optical parametric oscillator (OPO) pumped by the second-harmonic of a modelocked 82 MHz Ti:sapphire laser is described. With intracavity dispersion compensation, pulse durations down to 30 fs are obtained with a total average power up to 100 mW. The current wavelength range, with a 400 nm pump, is from 566 nm to 676 nm. Unusual tuning characteristics, including bichromatic emission, are presented in detail and explained theoretically.  相似文献   

17.
We describe configurations of a novel synchronously pumped femtosecond optical parametric oscillator based on the crystal RbTiOAsO(4) and operating with a signal-pulse-repetition frequency as high as 344 MHz. Average signal powers as high as 600 mW and pulse durations of 78 fs are demonstrated at a wavelength of 1.25 microm, and a characterization of the signal output using frequency-resolved optical gating implies asymmetric near-sech(2)(t) intensity-profile pulses with significant amounts of spectral cubic phase.  相似文献   

18.
We observed the phase relation among subharmonic pulses generated by a femtosecond optical parametric oscillator (OPO). The ratio of the optical frequencies of the idler, the signal, and the pump pulses was set to 1:2:3. Under these conditions the wavelengths of the second harmonic of the signal pulse and the sum frequency between the pump and the idler pulses are the same. The beat signal between these two pulses represents the phase relationship among the pump, the signal, and the idler. The beat frequency varied when the cavity length of the OPO was changed.  相似文献   

19.
We combined a tunable continuous-wave optical parametric oscillator and a femtosecond Ti:sapphire laser frequency comb to provide a phase-coherent bridge between the visible and the mid-infrared spectral ranges. As a first demonstration of this new technique we performed a direct frequency comparison between an iodine-stabilized Nd:YAG laser at 1064 nm and an infrared methane optical frequency standard at 3.39 microm.  相似文献   

20.
We have achieved efficient simultaneous intracavity doubling of the signal frequency and sum-frequency generation between the signal and the pump in a periodically poled LiNbO(3) femtosecond optical parametric oscillator pumped by a Ti:sapphire laser. The responsible mechanisms are second-, third-, and fourth-order quasi-phase matching (QPM). An ~56% poling duty cycle permits efficient even-order QPM. Femtosecond pulses tunable in the visible were generated with a total efficiency of more than 8% for only 480-mW pump power at 80 MHz. Optimization of the poling duty cycle can improve the efficiency further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号