首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enargite, a copper arsenic sulfide with the formula Cu3AsS4 is of environmental concern due to its potential to release toxic arsenic species. The oxidation and dissolution of enargite are governed by the composition and chemical state of the outermost surface layer. Qualitative and quantitative analysis of the enargite surface can be initially obtained on the basis of X‐ray photoelectron spectroscopy (XPS) binding energy and intensity data. However, a more precise determination of the chemical state of the principal elements of enargite (copper, arsenic and sulfur) in the altered surface layer and in the bulk of the mineral requires a combined analysis based on XPS photoelectron lines and the corresponding X‐ray excited Auger lines. On the basis of results obtained on natural and synthetic enargite samples and on standards of sulfides and oxides, the Auger parameter α′ of different compounds was calculated and the Wagner chemical state plots were drawn for arsenic, copper and sulfur. Arsenic in enargite is found to be in a chemical environment similar to that of arsenides or elemental arsenic, whereas copper in enargite is in a chemical state that corresponds to copper sulfide, Cu2S, for all samples irrespective of surface treatment (natural or freshly cleaved). Only sulfur changed from a chemical state similar to that of copper or iron sulfide in freshly cleaved samples to another state in natural enargite in the as‐received state. Thus, it is the sulfur atom at the surface of enargite that is most susceptible to changes in the enargite surface state and composition. A more detailed interpretation of this behavior, based on differences in the initial and final state effects, is proposed here. The concept of Auger parameter and chemical state plot, used here for the first time for investigating enargite, has proved to be a method to unambiguously assign the chemical state of the principal elements copper, arsenic and sulfur in these minerals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
用XPS和XAES分析电化学沉积的DLC膜   总被引:2,自引:0,他引:2       下载免费PDF全文
采用电化学沉积方法,以甲醇溶剂作碳源,直流电压作用下在单晶硅表面沉积得到碳薄膜。通过研究石墨、金刚石和样品薄膜的XPS和XAES谱图特征,证明了此方法沉积得到的是DLC薄膜;利用曲线拟合技术在C1s电子能谱图中拟合出sp3峰与sp2峰,并计算出样品薄膜中sp3碳的相对含量为55%;研究石墨、金刚石和样品薄膜的一阶微分XAES谱图,用线性插入法估算出样品薄膜中sp3碳的相对含量为60%。  相似文献   

3.
X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) have been used to investigate different polyethylene surfaces, i.e. low density polyethylene (PELD), high density polyethylene (PEHD) and polyethylene of ultra high molecular weight (PEUHMW). The ratio of Csp2/sp3 was evaluated from (i) fitting of XPS C 1s spectra, (ii) the width of XAES C KLL spectra (parameter D) and (iii) line shape analysis by the pattern recognition (PR) method using the fuzzy k-nearest neighbors (fkNN) rule. The proposed approaches investigate: (i) the differences between various polyethylene surfaces, (ii) their surface changes and degradation due to electron irradiation under various doses and (iii) their stability under electron beam irradiation.The results of proposed approaches, i.e. C 1s fitting, C KLL width evaluation and PR line shape analysis applied to C 1s and C KLL transitions, are qualitatively consistent. The unirradiated polyethylenes indicate nearly Csp3 hybridizations. Under an electron dose a rapid decrease of Csp3 is observed, starting at a dose of 100 Cm−2. The quantitative differences observed between results obtained from analyses using the C KLL and C 1s spectra, can be explained with a smaller average information depth of C KLL transition. However, quantitative discrepancies between results of various approaches using the same electron transition, i.e. C KLL or C 1s, are smaller. The surface degradation due to X-ray irradiation was negligible in comparison to electron beam irradiation. The PR method was efficient in identifying the polyethylene surfaces under various electron doses. The largest stability under an electron beam is exhibited by the PEUHMW.  相似文献   

4.
A surface analysis has been conducted on a series of electrodeposited nickel‐phosphorus (Ni–P) alloys containing from 6 to 29 at.% phosphorus, using X‐ray photoelectron spectroscopy (XPS) and X‐ray excited Auger electron spectroscopy (XAES). No changes in core‐level binding energies, Ni2p3/2 and Ni2p1/2, P2p, P2s, or X‐ray excited NiLMM and PKLL Auger lines were observed regardless of phosphorus concentration. The only systematic differences observed concerned: (i) the binding energy of the Ni2p satellite peak, (ii) the fine structure of the NiLMM Auger lines, (iii) the percentage of the satellite in the total Ni2p3/2 spectrum and (iv) the valence band density of states in the Ni3d electrons region, all related to the electronic structure of the Ni–P alloys. For the first time, it has been possible to describe and rationalise the influence of (phosphorus) ligand concentration on the electronic structure of nickel‐based alloys, using a screening model proposed in the literature for clarifying the role of substituents on the electronic structure of conductor compounds of nickel. As the phosphorus content increases, the number of non‐bonding Ni3d electrons decreases. Thus the d‐type core‐hole screening is less pronounced and the binding energy of the satellite for the final state with a filled Ni4s shell increases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity.  相似文献   

6.
Synthetic corundum (Al2O3), gibbsite (Al(OH)3), bayerite (Al(OH)3), boehmite (AlO(OH)) and pseudoboehmite (AlO(OH)) have been studied by high resolution XPS. The chemical compositions based on the XPS survey scans were in good agreement with the expected composition. High resolution Al2p scans showed no significant changes in binding energy, with all values between 73.9 and 74.4 eV. Only bayerite showed two transitions, associated with the presence of amorphous material in the sample. More information about the chemical and crystallographic environment was obtained from the O1s high resolution spectra. Here a clear distinction could be made between oxygen in the crystal structure, hydroxyl groups and adsorbed water. Oxygen in the crystal structure was characterised by a binding energy of about 530.6 eV in all minerals. Hydroxyl groups, present either in the crystal structure or on the surface, exhibited binding energies around 531.9 eV, while water on the surface showed binding energies around 533.0 eV. A distinction could be made between boehmite and pseudoboehmite based on the slightly lower ratio of oxygen to hydroxyl groups and water in pseudoboehmite.  相似文献   

7.
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH(4))Al(3)(PO(4))(3)(OH)·9(H(2)O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H(2)PO(4), OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.  相似文献   

8.
For the application of surface acoustic wave sensors at high temperatures, both a high-temperature stable piezoelectric substrate and a suitable metallization for the electrodes are needed. Our current attempt is to use TiAl thin films as metallization because this material is also known to be high temperature stable. In this study, Ti/Al multilayers and Ti-Al alloy layers were prepared in combination with an SiO2 cover layer or a W barrier layer at the interface to the substrate (thermally oxidized Si or Ca3TaGa3Si2O14) as an oxidation protection. To form the high-temperature stable γ-TiAl phase and to test the thermal stability of the layer systems, thermal treatments were done in vacuum at several temperatures. We used X-ray photoelectron spectroscopy (XPS) sputter depth-profiling to investigate the film composition and oxidation behavior. In this paper, we demonstrate how the semiautomatic peak fitting can help to extract beside the elemental information also the chemical information from the measured depth profiles.  相似文献   

9.
This paper reports the assessment of total arsenic and six arsenic species (As(III), As(V), MMA, DMA, AsBet, AsCol) as contaminants of mussel samples collected around the island of Sardinia and in the Gulf of Venice. The samples were analysed using cation- and anion-exchange HPLC-HG-AFS for speciation and ICP-AES for the total As determination. To ensure the robustness of the routine analytical method, the technique was validated using a candidate reference material, BCR-710, and good agreement was obtained. It was recognised that higher total arsenic concentration in mussels does not necessarily result in higher toxicity of mussel samples.  相似文献   

10.
Reduction of AsCl3 with SnCl2, followed by treatment of the "AsCl" with a 1,4-diimine results in electron transfer and formation of an arsenic(III) salt, while treatment of this arsenic(I) reagent or AsI3 with an alpha,alpha'-diiminopyridine ligand forms an arsenic(I) salt.  相似文献   

11.
The initial oxidation of magnesium at oxygen partial pressures between 1.3 × 10?8 and 1.3 × 10?5 Pa and at temperatures ranging from 273 to 550 K has been investigated in situ with X‐ray photoelectron spectroscopy (XPS), ellipsometry and high resolution elastic recoil detection analysis (HERDA). Quantitative analysis of the XPS spectra showed a clear oxygen deficiency with respect to MgO for the initial oxide. HERDA measurements confirmed this relatively low oxygen content in the thin oxide layers formed. Ellipsometry measurements showed that the electronic structure of the initially formed oxide differs significantly from that of bulk MgO. The band gap values at room temperature for the oxide layers investigated are clearly smaller than the value for bulk MgO. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Vassilaros GL 《Talanta》1971,18(10):1057-1061
A chemical X-ray method is proposed for determining trace amounts of arsenic and selenium in steel. The method utilizes a prechemical separation from the iron matrix and concentration of arsenic and selenium on a micr?pore membrane by reduction to the free metal by tin(II). Selenium was found to be a suitable carrier for arsenic (300 mug of selenium for the quantitative precipitation of 10-200 mug of arsenic). Arsenic (300 mug) was found to be a suitable carrier for up to 200 mug of selenium. Up to 200 mug of tellurium and antimony were experimentally found not to be co-precipitated with either arsenic or selenium.  相似文献   

13.
A method for the separation and identification of inorganic and methylated arsenic compounds in marine organisms was constructed by using a hydride generation/cold trap/gas chromatography mass spectrometry (HG/CT/GC MS) measurement system. The chemical form of arsenic compounds in marine organisms was examined by the HG/CT/GC MS system after alkaline digestion. It was observed that trimethylarsenic compounds were distributed mainly in the water-soluble fraction of muscle of carnivorous gastropods, crustaceans and fish. Also, dimethylated arsenic compounds were distributed in the water-soluble fraction of Phaeophyceae. It is thought that most of the trimethylated arsenic is likely to be arsenobetaine since this compound released trimethylarsine by alkaline digestion and subsequent reduction with sodium borohydride. The major arsenic compound isolated from the water-soluble fraction in the muscle and liver of sharks was identified as arsenobetaine from IR, FAB Ms data, NMR spectra and TLC behaviour. The acute toxicity of arsenobetaine was studied in male mice. The LD50 value was higher than 10 g kg−1. This compound was found in urine in the non-metabolized form. No particular toxic symptoms were observed following administration. These results suggest that arsenobetaine has low toxicity and is not metabolized in mice. The LD50 values of other minor arsenicals in marine organisms, trimethylarsine oxide, arsenocholine and tetramethylarsonium salt, were also examined in mice.  相似文献   

14.
An arsine generation-atomic absorption method for the rapid and precise determination of 0.04–4000 p.p.m. arsenic in geological materials is described. The siliceous sample is decomposed with perchloric, nitric and hydrofluoric acids and potassium permanganate solution, and the residue is dissolved in dilute hydrochloric acid. Arsine is generated with potassium iodide, tin(II) chloride and zinc powder, and introduced to an argon—hydrogen flame. The method is applied to various standard rocks, NBS mineral standards, and geochemical exploration samples. The relative standard deviation is 4–14 %.  相似文献   

15.
16.
The excitation of the lowest electronic states and vibrational excitation of cytosine (C) have been studied using electron energy loss spectroscopy (EELS, 0-100 eV) with angular analysis. The singlet states have been found to be in good agreement with UV-VIS absorption results on sublimed films, slightly blueshifted by about 0.1 eV. The EEL spectra recorded at residual energy below 2 eV show clear shoulders at energy losses of 3.50 and 4.25 eV (+/-0.1 eV). They are assigned to the lowest triplet electronic states of cytosine. Energies and molecular structures of the lowest-lying triplet state of C and its methylated and halogenated 5-X-C, 6-X-C, and 5-X, 6-X-C substituted derivatives (X=CH3, F, Cl, and Br) have been studied using quantum chemical calculations with both molecular orbital and density functional methods, in conjunction with the 6-311++G(d,p), 6-311++G(3df,2p), and aug-cc-pVTZ basis sets. The triplet-singlet energy gap obtained using coupled-cluster theory [CCSD(T)] and density functional theory (DFT) methods agrees well with those derived from EELS study. The first C's vertical triplet state is located at 3.6 eV, in good agreement with experiment. The weak band observed at 4.25 eV is tentatively assigned to the second C's vertical triplet excitation. For the substituted cytosines considered, the vertical triplet state is consistently centered at 3.0-3.2 eV above the corresponding singlet ground state but about 1.0 eV below the first excited singlet state. Geometrical relaxation involving out-of-plane distortions of hydrogen atoms leads to a stabilization of 0.6-1.0 eV in favor of the equilibrium triplet. The lowest-lying adiabatic triplet states are located at 2.3-3.0 eV. Halogen substitution at both C(5) and C(6) positions tends to reduce the triplet-singlet separations whereas methylation tends to enlarge it. The vibrational modes of triplet cytosine and the ionization energies of substituted derivatives were also evaluated.  相似文献   

17.
XPS and XAES studies have been used to establish SMSI effect in Rh/ZnO catalyst prepared from Rh6(CO)16 and reduced at high temperature. The interaction occurs between Rh metals and reduced Zn cations resulting an increase in the electron density on rhodium. The role of SMSI effect in the catalytic hydrogenation of CO has been examined.
Rh/ZnO, Rh6(CO)16 . Rh Zn, . CO.
  相似文献   

18.
The greater information depth provided in hard X-ray photoelectron spectroscopy (HAXPES) enables nondestructive analyses of the chemistry and electronic structure of buried interfaces. Moreover, for industrially relevant elements like Al, Si, and Ti, the combined access to the Al 1s, Si 1s, or Ti 1s photoelectron line and its associated Al KLL, Si KLL, or Ti KLL Auger transition, as required for local chemical state analysis on the basis of the Auger parameter, is only possible with hard X-rays. Until now, such photoemission studies were only possible at synchrotron facilities. Recently, however, the first commercial XPS/HAXPES systems, equipped with both soft and hard X-ray sources, have entered the market, providing unique opportunities for monitoring the local chemical state of all constituent ions in functional oxides at different probing depths, in a routine laboratory environment. Bulk-sensitive shallow core levels can be excited using either the hard or soft X-ray source, whereas more surface-sensitive deep core-level photoelectron lines and associated Auger transitions can be measured using the hard X-ray source. As demonstrated for thin Al2O3, SiO2, and TiO2 films, the local chemical state of the constituting ions in the oxide may even be probed at near-constant probing depth by careful selection of sets of photoelectron and Auger lines, as excited with the combined soft and hard X-ray sources. We highlight the potential of lab-based HAXPES for the research on functional oxides and also discuss relevant technical details regarding the calibration of the kinetic binding energy scale.  相似文献   

19.
以NH~4F作为F^-源,制备了一系列不同含F量的高T~cYBa~2Cu~3O~7-xF~y超导体,在名义F含量小于1.5mol范围内,基T~c值均比与之对照的不含F样品高2~6K.用XPS研究了这类含F材料表面和体相的化学态及其变化,根据同种化合物中不同元素间的结合能差和其它辅助实验结果,标识了每个元素不同化学态的光电子峰,并对各个峰的可能来源及其对应原子在结构中的位置和作用进行了讨论.结果揭示,表现和体相的体学态存在着较大差异.  相似文献   

20.
Herein, we report the construction of a Wagner chemical state plot for beryllium containing the following: metallic, oxide, nitride and carbide forms of beryllium by combining electron beam‐induced AES and XPS data. AES and XPS values were collected from metallic beryllium mechanically abraded in vacuum, bulk and native beryllium oxide and homogeneous secondary‐phase beryllium nitride and beryllium carbide inclusions. XPS data for beryllium nitride and carbide were obtained from the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号