共查询到20条相似文献,搜索用时 0 毫秒
1.
A physics-based model has been developed for laser shock peening (LSP) with femtosecond (fs) laser pulses (fs-LSP), which has never been reported in literature to the authors’ best knowledge. The model is tested by comparing simulations with measured plume/shock wave front transient propagations and the LSP-induced hardness enhancement layer thickness. Reasonably good agreements have been obtained. The model shows that fs-LSP can produce much higher pressure than LSP with nanosecond (ns) laser pulses (ns-LSP), and it can also generate very large compressive residual stress in the workpiece near-surface layer with a thickness up to ∼100 μm. The developed model provides a powerful guiding tool for the fundamental study and the practical applications of fs-LSP. This study, together with the recently reported work by Nakano et al. [Journal of Laser Micro/Nanoengineering 4(1) (2009) 35-38], has confirmed the feasibility of fs-LSP on both theoretical and experimental sides. 相似文献
2.
T.H. Loutas 《Applied Acoustics》2009,70(9):1148-1159
The condition monitoring of a lab-scale, single stage, gearbox using different non-destructive inspection methodologies and the processing of the acquired waveforms with advanced signal processing techniques is the aim of the present work. Acoustic emission (AE) and vibration measurements were utilized for this purpose. The experimental setup and the instrumentation of each monitoring methodology are presented in detail. Emphasis is given on the signal processing of the acquired vibration and acoustic emission signals in order to extract conventional as well as novel parameters-features of potential diagnostic value from the monitored waveforms. Innovative wavelet-based parameters-features are proposed utilizing the discrete wavelet transform. The evolution of selected parameters/features versus test time is provided, evaluated and the parameters with the most interesting diagnostic behaviour are highlighted. The differences in the parameters evolution of each NDT technique are discussed and the superiority of AE over vibration recordings for the early diagnosis of natural wear in gear systems is concluded. 相似文献
3.
A laser shock cleaning is a new dry cleaning methodology for the effective removal of submicron sized particles from solid surfaces. This technique uses a plasma shock wave produced by laser-induced air breakdown, which has applied to remove nano-scale silica particles from silicon wafer surfaces in this work. In order to characterize the laser shock cleaning process, acoustic waves generated during the shock process are measured in real time by a wide-band microphone and analyzed in the change of process parameters such as laser power density and gas species. It was found that the acoustic intensity is closely correlated with the shock wave intensity. From acoustic analysis, it is seen that acoustic intensity became stronger as incident laser power density increased. In addition, Ar gas has been found to be more effective to enhance the acoustic intensity, which allows higher cleaning performance compared with air or N2 gas. 相似文献
4.
Acoustic emission sensor is used to research the time-of-flight of the shock wave induced by laser-plasma in air for real time nondestructive evaluation (NDE) of laser shock processing. The time-of-flight of the shock wave propagating from the source to the sensor declines nonlinearly and similarly at the different distances for different laser energies. The velocity of the shock wave at the distance of 30 mm increases faster than that of the distance of 35 mm. The relationship between the laser energy and the distance is almost linearly when the signal with distortion is measured by acoustic emission sensor. Finally, Taylor solution is used to analyze the experimental results, and the empirical formula between the energy of the shock wave and the laser energy is established, which will provide a theoretical basis for real time NDE of laser shock processing. 相似文献
5.
In-process monitoring techniques for laser cleaning 总被引:1,自引:0,他引:1
Diverse in-process monitoring techniques based on acoustic, chromatic and intelligent approaches have been developed for laser cleaning not only to achieve the sound-cleaned surface but also to control the process in an automatic manner. The cleaning of various materials such as copper, marble, paper have also been carried out by using Q-switched Nd:YAG radiation. The process was successfully monitored by detecting the acoustic emission induced by laser–surface interactions during laser cleaning. Novel surface monitoring was achieved by chromatic modulation technique. The monitoring of laser fluence based on neural network logic was carried out by means of the recognition of acoustic spectrum patterns. The prediction system of surface damage has been also developed using fuzzy rule base in the same way as a human expert. These techniques may provide unique information for characterising the process as well as a promise of successful applications for laser cleaning techniques in real practical fields. 相似文献
6.
Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser 总被引:1,自引:0,他引:1
S. SathyajithS. Kalainathan 《Optics and Lasers in Engineering》2012,50(3):345-348
Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm2 and 32 pulses/mm2. Residual stress evaluation based on X-ray diffraction sin2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot. 相似文献
7.
应用激光冲击强化对纯铜表面进行处理改善其耐磨性能。采用球磨实验分析了激光冲击强化前后的耐磨性能, 利用X-射线衍射仪和电子背散射衍射技术对表层的相结构和晶粒形态分布进行了分析, 并对耐磨性能提高机理进行了讨论。结果表明, 纯铜经激光冲击强化后其比磨损率降低了19.5%, 同时由于表面粗糙度增大, 使得初期摩擦系数增加, 但随着摩擦周数的增加, 激光冲击强化作用明显, 摩擦系数下降。这是由于激光冲击强化在纯铜中引入大量细化晶粒、孪晶和亚结构, 阻碍了位错的运动, 增强了变形抗力, 从而提高了材料的耐磨性能。 相似文献
8.
As 7075 aluminum alloy is widely used in a humid environment, in order to enhance its abrasion resistance and electrochemical corrosion resistance, the paper studied the effect of laser shock peening on abrasion resistance in artificial seawater and corrosion resistance in 3.5% NaCl solution of 7075 aluminum alloy. Result shows that when specimens were treated once and twice with 7.17 GW/cm2 the abrasion loss would be reduced by 43.75% and 46.09% compare to untreated respectively, and the corrosion rate of 7075 aluminum alloy could be reduced as much as 50.32% by LSP treatment with 7.17 GW/cm2. What’s more, the effects on the microhardness, microstructure and residual stress with different LSP impacts and power density were investigated to find out strengthening mechanism of laser shock peening, which were observed and measured by microhardness tester, optical microscope and X-ray diffraction (XRD) residual stress tester. In the entire laboratory tests, it is considered that LSP is a practical option to improve abrasion resistance in seawater and corrosion resistance of 7075 aluminum alloy. 相似文献
9.
AbstractThe effect of initial dislocation density on subsequent dislocation evolution and strain hardening in FCC aluminium alloy under laser shock peening (LSP) was investigated by using three-dimension discrete dislocation dynamics (DD) simulation. Initial dislocations were randomly generated and distributed on slip planes for three different dislocation densities of 4.21 × 1012, 8.12 × 1012 and 1.26 × 1013 m?2. Besides, variable densities of prismatic loops were introduced into the DD cells as nanoprecipitates to study the dislocation pinning effect. The flow stresses as a function of strain rate obtained by DD simulation are compared with relevant experimental data. The results show a significant dislocation density accumulation in the form of dislocation band-like structures under LSP. The overall yield strength in FCC aluminium alloy decreases with increasing initial dislocation density and forest dislocation strengthening becomes negligible under laser induced ultra-high strain rate deformation. In addition, yield strength is enhanced by increasing the nanoprecipitate density due to dislocation pinning effect. 相似文献
10.
The thermal relaxation behaviors of residual stresses induced by laser peening (LP) in IN718 alloy were investigated using an integrated numerical simulation and experimental approach. LP and heat treatments (HT) were carried out after which the X-ray diffraction (XRD) technique was employed in measuring the residual stresses. Micro-structures were observed using an optic microscope (OM) and transmission electron microscope (TEM). Dislocations induced by LP were also observed by TEM and characterized using the XRD technique. The effects of the applied temperature and the exposure time on residual stress and micro-structures were investigated. The results show that the extent of the residual stresses relaxation increased accordingly with the increase in the applied temperature. The relaxation rate was initially high and tended to stabilize for a longer exposure time. Grain size evolution during the process was subsequently discussed. Furthermore, a conceivable mechanism of residual stresses thermal relaxation behavior was obtained. 相似文献
11.
近年来,激光增材制造技术(3D打印)成为科学研究及工业应用领域的热点。为了研究激光冲击强化对增材制造TC4钛合金性能的影响,本文采用能量为5 J,波长为1 064 nm,脉宽为10 ns,光斑直径为3 mm的脉冲激光对3D打印TC4钛合金进行激光冲击强化,分析了激光冲击强化前后材料的显微硬度、显微组织、残余应力以及高温氧化性能。结果表明,经过激光冲击强化后,材料的显微硬度比激光冲击强化前提高了8%,影响层深度达到0.4 mm,强化区域的晶粒得到细化,位错增多,并产生形变孪晶;激光冲击强化的残余压应力数值高达472 MPa,材料的高温抗氧化性能也得到改善。 相似文献
12.
Diagnosis of continuous rotor-stator rubbing in large scale turbine units using acoustic emissions 总被引:2,自引:0,他引:2
L.D. Hall 《Ultrasonics》2004,41(9):765-773
Continuous rubbing between the shaft and surrounding seals or end-glands of electricity generating turbine units can escalate into very severe vibration and costly rotor damage. Therefore such rotor-stator contacts require early diagnosis so as to minimize the financial consequences of any unplanned shutdowns. Acoustic emissions (AEs) or stress wave monitoring at the bearings has been identified as a sensitive non-destructive monitoring technique for such rub conditions [Electr. Eng. Jpn. 110(2) (1990); IEEE Proc. 6 (2000) 79; Hall and Mba, 14th International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM’2001), Manchester, UK, 2001, p. 21]. However, experimental results from real turbines have been scarce. This paper presents a diagnosis of continuous rotor-stator rubbing in an operational 500 MW turbine unit via high frequency AE measurement within a 100 KHz-1 MHz ultrasonic band. As detailed by Sato [Electr. Eng. Jpn. 110(2) (1990)] and reported in this paper the onset of a continuous rub contact at a seal/gland was revealed by a sinusoidal modulation within the raw ‘rf’ AE response. By synchronous measurement at adjacent bearings, an estimation of the location of the rub was calculated using the phase delay between the adjacent AE modulations. Importantly, the AE diagnosis was closely corroborated by post-inspection of the turbine rotor. 相似文献
13.
14.
针对近年来发展的激光冲击强化技术,采用1级谐振8级放大的系统结构和模块化设计方法,研制出了激光冲击强化用短脉宽、大能量的Nd:YAG脉冲激光器,并对激光器技术指标进行了测试分析。在预热20 min后、环境温度变化小于2 ℃的情况下,单脉冲最大输出能量高达25 J,能量不稳定度小于3%,脉宽16~20 ns可调,脉宽不稳定度小于1 ns,光束发散角小于等于2.5 mrad,重复频率达5 Hz。对TC4钛合金进行激光冲击强化实验,大幅度提高了TC4钛合金试件表面的残余压应力。结果表明,研制的激光器各项性能良好。 相似文献
15.
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的"残余应力洞"现象,并通过分析材料的动态力学响应特征揭示了"残余应力洞"的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成"残余应力洞"。 相似文献
16.
针对不锈钢焊接接头应力及组织分布不均匀,容易导致应力腐蚀开裂的问题,采用不等强度激光冲击波对316奥氏体不锈钢焊接接头进行处理。通过应力腐蚀试验、残余应力测试及微观组织分析,研究了激光冲击强化对焊接接头应力腐蚀抗性的影响及其作用机理。试验结果表明:激光冲击强化将焊接件的应力腐蚀断裂时间提高了33.48%。激光冲击波的作用,在焊接接头部位引入了高数值的残余压应力,一方面消除了热影响导致的残余拉应力,同时抵消了拉伸工作载荷的作用,降低局部应力梯度,从而延缓表面钝化膜的破裂;另一方面,激光冲击使焊接接头不同区域之间的微观组织均匀和细化,提高了微裂纹萌生的条件,降低了金属发生阳极溶解的可能性。两种因素的共同作用,使得不锈钢焊接接头的抗应力腐蚀性能显著增强。 相似文献
17.
Guijun Bi Andres Gasser Konrad Wissenbach Alexander Drenker Reinhart Poprawe 《Optics and Lasers in Engineering》2006,44(12):1348-1359
Laser cladding has been successfully introduced into industry for the use in wear and corrosion applications and in the repair work such as turbine components, moulds and dies. Through monitoring and furthermore controling the cladding process, the quality and reproducibility in the production can be ensured. Thus the economic efficiency can increase through the reduced scrap rate. The aim of this work is to identify and analyse the infrared temperature signal emitted from the melt pool, which could be used for quality control and for closed loop control. Different measure systems including a photodiode, pyrometer and CCD camera with different functional wavelengths were used to detect the temperature radiation. The detected signals show dependence on the main process parameters including laser power, powder feeding rate and scanning speed. The results of the clad such as dilution and dimension have very good correlation with the measured temperature signal. A process monitoring and control system based on the infrared temperature signal with coaxial alignment of the ancillary lenses was established and tested successfully. 相似文献
18.
为了使激光冲击强化技术能较好地应用于TC6钛合金的发动机叶片,对TC6钛合金进行试验研究。通过X射线衍射仪、透射电子显微镜等测试技术分析了不同参数下TC6钛合金的微观组织变化,用显微硬度计和残余应力测试仪分别表征表层硬度和残余应力变化,并测试材料冲击后的振动高周疲劳性能。试验结果表明:激光冲击材料后表面组织得到明显细化,随着冲击次数的增加,先后出现了高密度位错、位错胞、亚晶和纳米晶。性能方面,表面硬度在冲击一次即可提高19%,硬度影响深度达到700 m;与此同时表面残余应力最高达到-608.5 MPa,在500 m深度上仍具有-100 MPa左右的应力存在。经三次冲击后,标准疲劳试片的疲劳极限提高近20%。 相似文献
19.
为了在不影响柱状晶组织的前提下改善DZ17G定向凝固合金的力学性能,采用微激光冲击强化方法进行表面处理,通过X射线衍射、扫描电子显微镜、透射电子显微镜和显微硬度计,测试分析微激光冲击对DZ17G定向凝固合金表面完整性的影响。试验结果表明:在水下无吸收保护层微激光冲击处理后,合金表面发生了烧蚀、熔融,1次冲击后形成光滑熔融区,但随着冲击次数增加而形成了大量微小烧蚀孔洞和难熔颗粒;表层组织仍由和两相组成,柱状晶内形成了高密度位错和位错缠结,但未发生晶粒细化;硬度在深度上呈梯度分布,冲击1次后硬化层深度仅为100 m,表面硬度值达到503 HV,提高了22.7%,而且硬度值和硬化层深度都随着冲击次数增加而增大。 相似文献
20.
The present paper contributes to the development of new efficient solutions aimed at improving vehicle functional safety through the implementation of new transmission diagnostic methods. The study focuses on a new perspective of the diagnostic frequency range for hypoid gear condition monitoring, using acoustic emission and vibro-acoustic signal measurements and the Discrete Wavelet Transform for data analysis. The identification of the most sensitive diagnostic parameters and determination of frequency intervals using the Discrete Wavelet Transform, in which the most significant increase in the values of diagnostic parameters can be seen, has been presented. In addition, the identification of the sensitivity of the above-introduced non-destructive methods is presented. Diagnostic results in the extended frequency range were compared with the results of the classical method, and it was found that the selected parameter in the proposed measuring range could better characterize the condition of the gear unit. 相似文献