首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

2.
针对车辆起动电动机电气和机械故障发生时特征信号的时变不平稳特性,进行了时频域分析处理,提出了利用现代信号处理方法对故障信号提取特征向量的方法,主要对起动电动机的电枢和轴承故障进行诊断。在构建电机故障测试实验平台的基础上,利用破坏性实验构造了故障类型,测取了电枢电流和振动信号,分别采用小波分析理论和HHT变换对信号进行分析,通过分解再重构的方式将信号分解成了频率由高到低的不同分量,并获得了故障的特征频率,提取了特征向量。实验结果表明,基于HHT变换的现代信号处理方法在处理时变非平稳信号方面比小波分析理论更具有自适应性,更易识别。  相似文献   

3.
The diagnosis of train bearing defects plays a significant role in maintaining the safety of railway transport. However, the phenomenon of Doppler Effect in the acoustic signal recorded by the wayside Acoustic Defective Bearing Detector (ADBD) system leads to the difficulty for fault diagnosis of train bearings with a high moving speed. This paper proposes a double-searching solution based on improved Dopplerlet transform and Doppler transient matching to overcome the difficulty in wayside acoustic bearing diagnosis. In the solution, the first searching procedure is to extract necessary parameters of Doppler Effect under the situation with very low signal-to-noise ratio (SNR) based on an improved Dopplerlet transform. Using the obtained parameters, the Doppler Effect can be embedded into the constructed periodic Laplace wavelet transient models. Subsequently, the second searching procedure is conducted to search fault impact period of the defective bearing through an operation, called Doppler transient matching, which is to calculate the correlation coefficient between the Doppler transient model and the filtered raw signal with the Doppler Effect. The proposed double-searching algorithm can adapt to the real Doppler Effect situation and extract the exact fault impact period from the Doppler distorted signal, and thus shows powerful capability to analyze wayside acoustic signals from train bearings. The proposed wayside acoustic diagnostic scheme is verified by means of a simulated Doppler distorted signal with a very low SNR (−20 dB) and the experiments conducted on train bearings. The results indicate that the proposed algorithm is effective and has obvious advantages for ADBD system.  相似文献   

4.
The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both multiple layers and multiple scales at the same time, thus easily resulting in incomplete fault information extraction and low-rise identification accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are selected based on specialist experience, which indicates that they lack self-adaptation. To address these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is presented to extract a multidimensional feature matrix of the original bearing vibration signal, where the important parameters of HMFE are automatically determined by using the bird swarm algorithm (BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known as support matrix machine (SMM), is introduced for learning the discriminant fault information directly from the extracted multidimensional feature matrix and automatically identifying different bearing health conditions. Two experimental results on bearing fault diagnosis show that the proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively, which are higher those of several representative entropies reported by this paper. Moreover, in the two experiments, the standard deviations of identification accuracy of the proposed method were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods mentioned in this paper. The effectiveness and superiority of the proposed method are verified by the experimental results.  相似文献   

5.
In the signal processing of real subway vehicles, impacts between wheelsets and rail joint gaps have significant negative effects on the spectrum. This introduces great difficulties for the fault diagnosis of gearboxes. To solve this problem, this paper proposes an adaptive time-domain signal segmentation method that envelopes the original signal using a cubic spline interpolation. The peak values of the rail joint gap impacts are extracted to realize the adaptive segmentation of gearbox fault signals when the vehicle was moving at a uniform speed. A long-time and unsteady signal affected by wheel–rail impacts is segmented into multiple short-term, steady-state signals, which can suppress the high amplitude of the shock response signal. Finally, on this basis, multiple short-term sample signals are analyzed by time- and frequency-domain analyses and compared with the nonfaulty results. The results showed that the method can efficiently suppress the high-amplitude components of subway gearbox vibration signals and effectively extract the characteristics of weak faults due to uniform wear of the gearbox in the time and frequency domains. This provides reference value for the gearbox fault diagnosis in engineering practice.  相似文献   

6.
Fault diagnosis of mechanical equipment is mainly based on the contact measurement and analysis of vibration signals. In some special working conditions, the non-contact fault diagnosis method represented by the measurement of acoustic signals can make up for the lack of contact testing. However, its engineering application value is greatly restricted due to the low signal-to-noise ratio (SNR) of the acoustic signal. To solve this deficiency, a novel fault diagnosis method based on the generalized matrix norm sparse filtering (GMNSF) is proposed in this paper. Specially, the generalized matrix norm is introduced into the sparse filtering to seek the optimal sparse feature distribution to overcome the defect of low SNR of acoustic signals. Firstly, the collected acoustic signals are randomly overlapped to form the sample fragment data set. Then, three constraints are imposed on the multi-period data set by the GMNSF model to extract the sparse features in the sample. Finally, softmax is used to as a classifier to categorize different fault types. The diagnostic performance of the proposed method is verified by the bearing and planetary gear datasets. Results show that the GMNSF model has good feature extraction ability performance and anti-noise ability than other traditional methods.  相似文献   

7.
The sparse decomposition based on matching pursuit is an adaptive sparse expression of the signals. An adaptive matching pursuit algorithm that uses an impulse dictionary is introduced in this article for rolling bearing vibration signal processing and fault diagnosis. First, a new dictionary model is established according to the characteristics and mechanism of rolling bearing faults. The new model incorporates the rotational speed of the bearing, the dimensions of the bearing and the bearing fault status, among other parameters. The model can simulate the impulse experienced by the bearing at different bearing fault levels. A simulation experiment suggests that a new impulse dictionary used in a matching pursuit algorithm combined with a genetic algorithm has a more accurate effect on bearing fault diagnosis than using a traditional impulse dictionary. However, those two methods have some weak points, namely, poor stability, rapidity and controllability. Each key parameter in the dictionary model and its influence on the analysis results are systematically studied, and the impulse location is determined as the primary model parameter. The adaptive impulse dictionary is established by changing characteristic parameters progressively. The dictionary built by this method has a lower redundancy and a higher relevance between each dictionary atom and the analyzed vibration signal. The matching pursuit algorithm of an adaptive impulse dictionary is adopted to analyze the simulated signals. The results indicate that the characteristic fault components could be accurately extracted from the noisy simulation fault signals by this algorithm, and the result exhibited a higher efficiency in addition to an improved stability, rapidity and controllability when compared with a matching pursuit approach that was based on a genetic algorithm. We experimentally analyze the early-stage fault signals and composite fault signals of the bearing. The results further demonstrate the effectiveness and superiority of the matching pursuit algorithm that uses the adaptive impulse dictionary. Finally, this algorithm is applied to the analysis of engineering data, and good results are achieved.  相似文献   

8.
近场子空间聚焦的碰摩故障声发射定位方法   总被引:1,自引:0,他引:1       下载免费PDF全文
李晶  邓艾东  杨勇  赵力  郭如雪 《声学学报》2017,42(6):703-712
针对宽带多源声发射信号的相干、多模态和能量衰减快问题,提出一种近场多重相干信号子空间聚焦的定位算法用于碰摩故障声发射源的定位检测。首先,为滤除干扰模态波、减小频散效应,采用基于模态声发射传播特性分析的小波分解滤波方法,从碰摩初期的声发射信号中获取零阶模态波及波速用于定位计算;其次,为实现信号解相干,提出基于双边相关变换(TCT)的近场聚焦矩阵估计方法;最后,针对声发射信号的能量衰减快问题,利用近场基于特征分解的多重信号分类(N-MUSIC)的空间谱估计方法来实现声源的精确定位。理论分析和实验结果表明:该方法定位精度高、计算复杂度低、稳定性强,能有效识别多个相干碰摩声源。相比传统相干子空间算法(CSM),该方法减少了信号初值和聚焦频点的计算量,对双声源的分辨概率较现有修正近场多重信号分类算法提高了17%,是一种有效的碰摩故障源检测方法。   相似文献   

9.
Integer-scale structuring element is usually used in the traditional mathematical morphology (MM) for signal processing. When applied for impulsive feature demodulation of vibration signal of rolling element bearings, the integer-scale MM (ISMM) may lead to low resolution result and thus undermines its defect diagnosis capability. For this reason, this paper proposes a continuous-scale MM (CSMM) scheme by interpolation and re-sampling to improve scale resolution for more reliable fault signature extraction. Based on the frequency domain kurtosis criterion, a narrowband merging operation is employed to locate the optimal scale band that best reflects the impulsive feature from the CSMM analysis results. The demodulated components in the optimal scale band are employed to detect the existence of the bearing fault. The proposed optimal CSMM demodulation technique is evaluated using both simulated and experimental bearing vibration signals. The results show that, the CSMM is capable of generating demodulation signals with higher resolution, and the optimal scale band demodulation based on the CSMM can reliably extract impulsive features for bearing defect diagnosis.  相似文献   

10.
余永增 《应用声学》2018,37(6):889-894
为解决振动检测方法不能有效识别低速旋转机械滚动轴承故障问题,利用声发射检测方法,建立了滚动轴承低速声发射信号采集试验装置,对模拟人工缺陷滚动轴承声发射信号进行了采集,进而对滚动轴承声发射信号进行总体平均经验模式分解,结合能量矩及相关系数法综合判断分解后各模态分量的真伪,据此提取出特征信号并做出其局部Hilbert边际谱,最后对滚动轴承各种故障模式进行诊断。试验结果表明该诊断方法能准确识别滚动轴承声发射信号故障频率,依据特征频率及幅值大小可对低速滚动轴承故障进行有效诊断。  相似文献   

11.
This paper proposes a multi-fault detection method based on the adaptive spectral kurtosis (ASK) analysis of the vibration signal from single sensor. A theoretical model of multiple bearing faults is established in this paper. Compared with the kurtogram and protrugram techniques, the proposed method can more effectively extract signatures of multiple bearing faults even in the presence of strong background noise. The performance of the proposed method in fault detection of the rolling element bearings is validated using simulation data and experimental signals from a bearing with multiple faults and two faulty bearings.  相似文献   

12.
The health condition of the rolling bearing seriously affects the operation of the whole mechanical system. When the rolling bearing parts fail, the time series collected in the field generally shows strong nonlinearity and non-stationarity. To obtain the faulty characteristics of mechanical equipment accurately, a rolling bearing fault detection technique based on k-optimized adaptive local iterative filtering (ALIF), improved multiscale permutation entropy (improved MPE), and BP neural network was proposed. In the ALIF algorithm, a k-optimized ALIF method based on permutation entropy (PE) is presented to select the number of ALIF decomposition layers adaptively. The completely average coarse-graining method was proposed to excavate more hidden information. The performance analysis of the simulation signal shows that the improved MPE can more accurately dig out the depth information of the time series, and the entropy value obtained is more consistent and stable. In the research application, rolling bearing time series are decomposed by k-optimized ALIF to obtain a certain number of intrinsic mode functions (IMFs). Then the improved MPE value of effective IMF is calculated and input into backpropagation (BP) neural network as the feature vector for automatic fault identification. The comparative analysis of simulation signals shows that this method can extract fault information effectively. At the same time, the experimental part shows that this scheme not only effectively extracts the fault features, but also realizes the classification and identification of different fault modes and faults of different degrees, which has a certain application prospect in the research and application direction of rolling bearing fault identification.  相似文献   

13.
为了解决傅里叶变换难以兼顾信号在时域和频域中的全貌和局部化特征以及支持向量机惩罚参数 和核函数参数 选取的问题,提出了基于小波包和GA-SVM的轴承故障诊断方法。首先通过实验采集多种工况下故障轴承和正常轴承的振动信号,从振动信号中提取能够表征轴承运行状态的时频域特征以及基于小波包分析的特征向量来作为GA-SVM的输入,然后在SVM的基础上,针对SVM的惩罚参数和核函数参数在不同应用场景下的取值难以确定的特性,采用了遗传算法对支持向量机进行参数优化的GA-SVM算法进行模式识别。实验结果显示,基于小波包和GA-SVM的轴承故障诊断方法比SVM和BP都具有更高的识别精度。  相似文献   

14.
T.H. Loutas 《Applied Acoustics》2009,70(9):1148-1159
The condition monitoring of a lab-scale, single stage, gearbox using different non-destructive inspection methodologies and the processing of the acquired waveforms with advanced signal processing techniques is the aim of the present work. Acoustic emission (AE) and vibration measurements were utilized for this purpose. The experimental setup and the instrumentation of each monitoring methodology are presented in detail. Emphasis is given on the signal processing of the acquired vibration and acoustic emission signals in order to extract conventional as well as novel parameters-features of potential diagnostic value from the monitored waveforms. Innovative wavelet-based parameters-features are proposed utilizing the discrete wavelet transform. The evolution of selected parameters/features versus test time is provided, evaluated and the parameters with the most interesting diagnostic behaviour are highlighted. The differences in the parameters evolution of each NDT technique are discussed and the superiority of AE over vibration recordings for the early diagnosis of natural wear in gear systems is concluded.  相似文献   

15.
李常有  徐敏强  郭耸 《应用声学》2008,27(4):315-320
旋转机械在运行过程中产生的声信号包含了滚动轴承的运行状态信息,且可采用非接触式测量,本文应用它对滚动轴承进行故障诊断。基于morlet小波变换的包络分析对采集的声信号进行降噪及包络处理,然后变换到频域,提取出特征频率并经过转换后作为线性神经网路的输入向量,辨识滚动轴承的状态。实验表明,本方法对滚动轴承故障诊断是有效的。  相似文献   

16.
Spectral analysis techniques to process vibration measurements have been widely studied to characterize the state of gearboxes. However, in practice, the modulated sidebands resulting from the local gear fault are often difficult to extract accurately from an ambiguous/blurred measured vibration spectrum due to the limited frequency resolution and small fluctuations in the operating speed of the machine that often occurs in an industrial environment. To address this issue, a new time-domain diagnostic algorithm is developed and presented herein for monitoring of gear faults, which shows an improved fault extraction capability from such measured vibration signals. This new time-domain fault detection method combines the fast dynamic time warping (Fast DTW) as well as the correlated kurtosis (CK) techniques to characterize the local gear fault, and identify the corresponding faulty gear and its position. Fast DTW is employed to extract the periodic impulse excitations caused from the faulty gear tooth using an estimated reference signal that has the same frequency as the nominal gear mesh harmonic and is built using vibration characteristics of the gearbox operation under presumed healthy conditions. This technique is beneficial in practical analysis to highlight sideband patterns in situations where data is often contaminated by process/measurement noises and small fluctuations in operating speeds that occur even at otherwise presumed steady-state conditions. The extracted signal is then resampled for subsequent diagnostic analysis using CK technique. CK takes advantages of the periodicity of the geared faults; it is used to identify the position of the local gear fault in the gearbox. Based on simulated gear vibration signals, the Fast DTW and CK based approach is shown to be useful for condition monitoring in both fixed axis as well as epicyclic gearboxes. Finally the effectiveness of the proposed method in fault detection of gears is validated using experimental signals from a planetary gearbox test rig. For fault detection in planetary gear-sets, a window function is introduced to account for the planet motion with respect to the fixed sensor, which is experimentally determined and is later employed for the estimation of reference signal used in Fast DTW algorithm.  相似文献   

17.
Vibration signal analysis is the most widely used technique in condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for rolling element bearing fault diagnosis based on near-field acoustic holography (NAH) and gray level co-occurrence matrix (GLCM) is presented in this paper. It focuses on applying the distribution information of sound field to bearing fault diagnosis. A series of rolling element bearings with different types of fault are experimentally studied. Sound fields and corresponding acoustic images in different bearing conditions are obtained by fast Fourier transform (FFT) based NAH. GLCM features are extracted for capturing fault pattern information underlying sound fields. The optimal feature subset selected by improved F-score is fed into multi-class support vector machine (SVM) for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with the traditional ABD method. Considering test cost, the quantized level and the number of GLCM features for each characteristic frequency is suggested to be 4 and 32, respectively, with the satisfactory accuracy rate 97.5%.  相似文献   

18.
The vibration signals from complex structures such as wind turbine (WT) planetary gearboxes are intricate. Reliable analysis of such signals is the key to success in fault detection and diagnosis for complex structures. The recently proposed iterative atomic decomposition thresholding (IADT) method has shown to be effective in extracting true constituent components of complicated signals and in suppressing background noise interferences. In this study, such properties of the IADT are exploited to analyze and extract the target signal components from complex signals with a focus on WT planetary gearboxes under constant running conditions. Fault diagnosis for WT planetary gearboxes has been a very important yet challenging issue due to their harsh working conditions and complex structures. Planetary gearbox fault diagnosis relies on detecting the presence of gear characteristic frequencies or monitoring their magnitude changes. However, a planetary gearbox vibration signal is a mixture of multiple complex components due to the unique structure, complex kinetics and background noise. As such, the IADT is applied to enhance the gear characteristic frequencies of interest, and thereby diagnose gear faults. Considering the spectral properties of planetary gearbox vibration signals, we propose to use Fourier dictionary in the IADT so as to match the harmonic waves in frequency domain and pinpoint the gear fault characteristic frequency. To reduce computing time and better target at more relevant signal components, we also suggest a criterion to estimate the number of sparse components to be used by the IADT. The performance of the proposed approach in planetary gearbox fault diagnosis has been evaluated through analyzing the numerically simulated, lab experimental and on-site collected signals. The results show that both localized and distributed gear faults, both the sun and planet gear faults, can be diagnosed successfully.  相似文献   

19.
Fault diagnosis of wind turbines is of great importance to reduce operating and maintenance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on single faults, and the methods for combined faults usually depend on inefficient manual analysis. Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT) machine learning based fault diagnosis method for combined fault of wind turbines, which can identify the fault type of wind turbines simply and efficiently without human experience and with low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine (SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models, the proposed model has superiority for this classification problem.  相似文献   

20.
章欣  冯乃章  王艳  沈毅 《声学学报》2015,40(4):537-545
高速铁路的发展对钢轨的安全性提出了特殊要求,因此对钢轨内部裂纹的特征分析具有重要意义。为了研究钢轨内部裂纹声发射源特征,对钢轨中不同类型、深度和传导距离的裂纹声发射源进行了分析.采用有限元方法建立了钢轨模型并通过实验验证,然后结合小波方法和瑞利-兰姆方程分析了裂纹声发射源的特征。结果表明:钢轨中不同类型和不同频率特征的声发射源能够利用声发射模态之间的强度比率来识别;轨腰深度上的声发射源具有统一的模态特征,而轨头和轨底的声发射源则具有复杂的模态特征;同时,不同类型声发射源在钢轨中的传导特征差异明显。研究结果对利用声发射技术进行钢轨裂纹检测提供了指导,可作为实际应用的重要参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号