首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model.  相似文献   

2.
吴丽君  韩宇  公卫江  谭天亚 《物理学报》2011,60(10):107303-107303
采用Anderson模型哈密顿量和非平衡态格林函数方法对量子点环以不同构型嵌入A-B干涉器中电子输运的退耦合态及反共振现象进行了理论研究. 结果表明,量子点环A-B干涉器的结构对称性以及穿过A-B干涉器的磁通量是诱发退耦合现象的两种物理机理. 耦合量子点结构的对称性越高,体系在相干电子输运过程中表现出来的退耦合及反共振现象越明显. 而且在具有高度对称性的耦合量子点结构中,通过磁场调节体系的结构参数可以分别使第奇数或第偶数分子本征态从电极上退耦合,从而使电子输运电导表现出奇偶对等振荡现象. 这为设计纳米电子开关器件提供了一个新的物理模型. 关键词: 量子点环 A-B干涉器 退耦合 反共振  相似文献   

3.
白继元  贺泽龙  杨守斌 《物理学报》2014,63(1):17303-017303
利用非平衡格林函数方法,理论研究每臂中嵌有一个平行耦合双量子点分子的A-B干涉仪(平行耦合双量子点分子A-B干涉仪)的电荷及其自旋输运性质.无外磁场时,与每臂中嵌有一个量子点的A-B干涉仪相比较,平行耦合双量子点分子A-B干涉仪中电子隧穿变得更加容易发生.当平行耦合双量子点分子A-B干涉仪中引入外磁场时,能够在电导能谱中观察到一个Fano共振和一个反共振,这两种输运状态在磁场取适当数值时能够同时消失.此外,通过调节左右两电极间的偏压、磁通和Rashba自旋轨道相互作用,可以对体系自旋输运进行调控.  相似文献   

4.
We investigate the electron transmission through a structure of serial mesoscopic metallic rings coupled to two external leads. A set of analytical expressions based on the quantum waveguide transport and the transfer matrix method are derived and used to discuss the effects of geometric configurations on transmission probabilities. It is found that in the contact ring case the existence of an applied magnetic flux is necessary to create transmission gaps, while in the non-contact ring case transmission gaps always appear irrespective of whether there is an applied magnetic flux or not. The transmissions for periodic rings with a defect ring and periodic rings built by two sorts of rings are also briefly studied. It is also found that the transmission periodicity with wave vector must be ensured by the commensurability of two characteristic lengths, i.e., of the half perimeter of a ring and the connecting wire between two adjacent rings. The special points of wave vector and magnetic flux which give rise to the transmission resonance and antiresonance are analyzed in detail.  相似文献   

5.
We consider a two-terminal Aharonov-Bohm (AB) interferometer with a quantum dot inserted in one path of the AB ring. We investigate the transport properties of this system in and out of the Kondo regime. We utilize perturbation theory to calculate the electron self-energy of the quantum dot with respect to the intradot Coulomb interaction. We show the expression of the Kondo temperature as a function of the AB phase together with its dependence on other characteristics such as the linewidth of the ring and the finite Coulomb interaction and the energy levels of the quantum dot. The current oscillates periodically as a function of the AB phase. The amplitude of the current oscillation decreases with increasing Coulomb interaction. For a given temperature, the electron transport through the AB interferometer can be selected to be in or out of the Kondo regime by changing the magnetic flux threading perpendicular to the AB ring of the system.  相似文献   

6.
Electron transport through a linear array of nanoscopic rings with six quantum dot sites per ring is investigated in the presence of an external magnetic flux producing an Aharonov-Bohm phase shift effect. A tight-binding model is employed to analytically calculate the transmission as a function of electron energy, external flux, and inter-site coupling parameters. Current vs. voltage relationships of the ring system are computed using a standard scattering theory of transport and shown to modulate between semiconductor and ohmic characteristics. System parameters are adjusted in order to study the effects of a longitudinal strain on the transmission properties of the linear multiple-ring array. Longitudinal strain is modeled with a Slater-Koster type theory and is demonstrated to affect the transmission properties primarily by narrowing the transmission bands and opening up additional bandgaps in the band structure. In addition, a universal resonant transmission condition as a function of flux is extended to show that the application of strain causes the resonant transmission peaks to converge towards one-half of a flux quantum.  相似文献   

7.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

8.
The charge transport and the noise of a quantum wire network, made of three semi-infinite external leads attached to a ring crossed by a magnetic flux, are investigated. The system is driven away from equilibrium by connecting the external leads to heat reservoirs with different temperatures and/or chemical potentials. The properties of the exact scattering matrix of this configuration as a function of the momentum, the magnetic flux and the transmission along the ring are explored. We derive the conductance and the noise, describing in detail the role of the magnetic flux. In the case of weak coupling between the ring and the reservoirs, a resonant tunneling effect is observed. We also discover that a non-zero magnetic flux has a strong impact on the usual Johnson–Nyquist law for the pure thermal noise at small temperatures.  相似文献   

9.
王瑞  孔令民  周运清  张存喜  邢志勇 《中国物理 B》2010,19(12):127202-127202
In this paper the quantum transport in a dot-array coupled with an Aharonov–Bohm (AB) ring is investigated via single-band tight-binding Hamiltonian. It is shown that the output spin current is a periodic function of the magnetic flux in the quantum unit Φ0. The resonance positions of the total transmission probability do not depend on the size of the AB ring but the electronic spectrum. Moreover, the persistent currents in the AB ring is also spin-polarization dependent and different from the isolated AB ring where the persistent current is independent of spin polarization.  相似文献   

10.
Fractionally charged quasiparticles in the quantum Hall state with a filling factor nu=5/2 are expected to obey non-Abelian statistics. We demonstrate that their statistics can be probed by transport measurements in an electronic Mach-Zehnder interferometer. The tunneling current through the interferometer exhibits a characteristic dependence on the magnetic flux and a nonanalytic dependence on the tunneling amplitudes which can be controlled by gate voltages.  相似文献   

11.
We present numerical investigations of the transmission properties of electrons in a normal quantum wire tangentially attached to a superconductor ring threaded by magnetic flux. A point scatterer with a δ -function potential is placed at node to model scattering effect. We find that the transmission characteristics of electrons in this structure strongly depend on the normal or superconducting state of the ring. The transmission probability as a function of the energy of incident electrons, in the case of a superconductor ring threaded by one quantum magnetic flux, emerges one deep dip, imposed upon the first broad bump in spectrum. This intrinsic conductance dip originates from the superconductor state of the ring. When increasing the magnetic flux from one quantum magnetic flux to two, the spectrum shifts toward higher energy region in the whole. This conductance dip accordingly shifts and appears in the second bump. In the presence of a point-scatterer at the node, the spectrum is substantially modified. Based on the condition of the formation of the standing wave functions in the ring and the broken of the time-reserve symmetry of Schr?dinger equation after switching magnetic flux, the characteristics of transmission of electrons in this structure can be well understood. Received 6 November 2001  相似文献   

12.
A model for a broad class of Aharonov-Bohm interferometers consisting of two arcs with and without scattering centers is constructed. Explicit expressions and asymptotic relations are found for the transmission coefficient for electrons in the simplest interferometers of diverse geometry (a symmetric interferometer with scattering admixture and an Aharonov-Bohm ring with two conductors attached at a single point). The influence of the relationship between the sizes of arcs and the arrangement of potentials of scattering centers, the magnetic field flux, and the energy of electrons on transport properties of the suggested nanodevices is studied.  相似文献   

13.
Suzhi Wu  Yu-qiang Ma 《Physics letters. A》2008,372(13):2326-2331
Persistent current and transmission probability in the Aharonov-Bohm (AB) ring with an embedded quantum dot (QD) are studied using the technique of the scattering matrix. For the first time, we find that the persistent current can arise in the absence of magnetic flux in the ring with an embedded QD. The persistent current and the transmission probability are sensitive to the lead-ring coupling and the short-range potential barrier. It is shown that increasing the lead-ring coupling or the short-range potential barrier causes the suppression of the persistent current and the increasing resonance width of the transmission probability. The effect of the potential barrier on the number of the transmission peaks is also investigated. The dependence of the persistent current and the transmission probability on the magnetic flux exhibits a periodic property with period of the flux quantum.  相似文献   

14.
We discuss the influence of nanostructure geometry on the thermoelectric properties in quantum ring consists of one QD in each arm, each QD connects with side QD. The calculations are based on the time-dependent Hamiltonian model, the steady state is considered to obtain an analytical expression for the transmission probability as a function of system energies. We employed the transmission probability to calculate the thermoelectric properties. We investigate thermoelectric properties through three configurations of this nanostructure. Figure of merit enhanced in configuration (II) when side QD connected to upper arm of quantum ring. The magnetic flux threads quantum ring. The effect of magnetic flux on the thermoelectric properties is examined.  相似文献   

15.
We study the spin-dependent electron transport through parallel coupled quantum dots (QDs) embedded in an Aharonov-Bohm (AB) interferometer connected asymmetrically to leads. Both the Rashba spin-orbit interaction (RSOI) inside one of the QDs, which acquires a spin-dependent phase factor in the tunnel-coupling strengths when the electrons flow through this arm of the AB ring, and an inhomogeneous magnetic flux penetrating the structure are taken into account. Due to the existence of the RSOI induced phase factor, magnetic flux and the interdot coupling, a spin-dependent Fano effect will arise. We pay special attention on the properties of the local density of states and the conductance when the electron phase factor is close to integer multiplies of a quantum of flux. It is shown that the roles and lifetimes of the bonding and antibonding states of the two spin components are very sensitive to the phase factor and can be well controlled accordingly. This manipulation of the spin degree of freedom relies on the existence of RSOI but can be fulfilled even when its strength is very weak. The proposed structure can be easily realized with present technology and might be of practical applications in spintronics devices and quantum computing.  相似文献   

16.
The supercurrent through a double Aharonov–Bohm interferometer formed by parallel-coupled four quantum dots is investigated theoretically. The possibility of controlling the supercurrent of the system is explored by tuning the interdot coupling, dot energy levels, and magnetic flux treading the ring connecting dots and leads. Whether the supercurrent sign can be changed depends not only on the magnetic flux but also on the quantum dot energy levels. By tuning the quantum dot energy levels, the behavior of the supercurrent shows swap effects, which might be used to design a qubit. It is also found that the oscillation period of the supercurrent with respect to the magnetic flux depends on the ratio of the two parts fluxes.  相似文献   

17.
杜坚  李春光  秦芳 《物理学报》2009,58(5):3448-3455
研究了与铁磁/半导体/铁磁结构相关的双量子环自旋输运的规律,研究结果表明:总磁通为零条件下,铁磁电极磁化方向反平行时,双量子环与单量子环相比提高了自旋电子透射概率的平均值.铁磁电极磁化方向平行时,双量子环对提高自旋向下电子平均透射概率的效果更明显;双量子环受到Rashba自旋轨道耦合作用影响时,自旋电子的平均透射概率明显高于单量子环,即使再加上外加磁场的影响,透射概率较高这一特征依然存在;双量子环所含的δ势垒具有阻碍自旋电子输运的作用,随δ势垒强度Z的增大透射概率 关键词: 双量子环 Rashba自旋轨道耦合 透射概率 δ势垒')" href="#">δ势垒  相似文献   

18.
Propagation of light in a rotating optical ring resonator shows striking similarities with magnetic flux induced electron propagation in small metal rings. This correspondence leads us to predict the possibility of Bloch oscillations and Zener tunneling with light in sufficiently high-Q rotating ring resonators.  相似文献   

19.
In this work, we present a novel wavelength multiplexing concept for an integrated label-free biosensor array employing silicon photonic Mach-Zehnder interferometers as sensors. Microring resonators act as wavelength selective elements in order to address the individual interferometers. Wire Bragg gratings terminate the interferometer arms and reflect the light back, which eliminates the risk of a wavelength mismatch between drop and add port. The characteristics of the device are discussed and the design based on FEM and 3D-FDTD simulations as well as measurements of the nanophotonic key components—micro ring resonators, Mach-Zehnder interferometers and photonic wire Bragg gratings—are presented. Measurements of combinations of the wire Bragg gratings with ring resonators and Mach-Zehnder interferometer sensors demonstrate the applicability of the reflectors in photonic circuits.  相似文献   

20.
P.P. Yupapin  P. Yabosdee 《Optik》2010,121(6):567-574
We first propose a concept of a new interferometric technique, where the ultra-narrow spectral width of light pulse generated by using the micro-ring resonators can be used to perform the ultra-high-resolution interferometer. Firstly, the SHG using micro-ring resonators is analyzed and described, Secondly, the increasing in optical path difference (OPD) depends on the full-width at half-maximum (FWHM) width of the generated pulse is discussed. Finally, the optimum entangled photon visibility can be formed the quantum interferometer where the measurement resolution of 10−5-10−7 in term of birefringence is achieved. The use of such systems for quantum interferometer, high-resolution interferometer and surface characterization are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号