首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main aim of this paper is to provide a simple yet efficient solution for the free vibration analysis of functionally graded (FG) conical shells and annular plates. A solution approach based on Haar wavelet is introduced and the first-order shear deformation shell theory is adopted to formulate the theoretical model. The material properties of the shells are assumed to vary continuously in the thickness direction according to general four-parameter power-law distributions in terms of volume fractions of the constituents. The separation of variables is first performed; then Haar wavelet discretization is applied with respect to the axial direction and Fourier series is assumed with respect to the circumferential direction. The constants appearing from the integrating process are determined by boundary conditions, and thus the partial differential equations are transformed into algebraic equations. Then natural frequencies of the FG shells are obtained by solving algebraic equations. Accuracy and reliability of the current method are validated by comparing the present results with the existing solutions. Effects of some geometrical and material parameters on the natural frequencies of shells are discussed and some selected mode shapes are given for illustrative purposes. It’s found that accurate frequencies can be obtained by using a small number of collocation points and boundary conditions can be easily achieved. The advantages of this current solution method consist in its simplicity, fast convergence and excellent accuracy.  相似文献   

2.
An analysis is presented for the free vibration of joined conical-cylindrical shells. The governing equations of vibration of a conical shell, including a cylindrical shell as a special case, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the matrix has been determined, the entire structure matrix is obtained by the product of the transfer matrices of the shells and the point matrix at the joint, and the frequency equation is derived with terms of the elements of the structure matrix under the boundary conditions. The method has been applied to a joined truncated conical-cylindrical shell and an annular plate-cylindrical shell system, and the natural frequencies and the mode shapes of vibration calculated numerically. The results are presented.  相似文献   

3.
An analysis is presented for the vibration characteristics of thin rotating cylindrical shells with various boundary conditions by use of Fourier series expansion method. Based on Sanders’ shell equations, the governing equations of motion which take into account the effects of centrifugal and Coriolis forces as well as the initial hoop tension due to rotating are derived. The displacement field is expressed as a product of Fourier series expressions which represents the axial modal displacements and trigonometric functions which represents the circumferential modal displacements. Stokes’ transformation is employed to derive the derivatives of the Fourier series expressions. Then, through the process of formula derivation, an explicit expression of the exact frequency equation can be obtained for a thin rotating cylinder with classical boundary conditions of any type. Once the frequency equation has been determined, the frequencies are calculated numerically. To validate the present analysis, comparisons between the results of the present method and previous studies are performed and very good agreement is achieved. Finally, the method is applied to investigate the vibration characteristics of thin rotating cylindrical shells under various boundaries, and the results are presented.  相似文献   

4.
Although much has been written about the free vibrations of rectangular plates having completely free boundaries, very little has appeared for the case when the plates have curvature: i.e., shallow shells. A solution of the problem is presented here for shells having arbitrary (but constant) curvature. The Ritz method is used, with displacement functions assumed in the form of polynomials. Convergence studies were made to determine the number of terms required for reasonable solution accuracy. Numerical results were obtained for the frequencies and mode shapes of three types of shells—circular cylindrical, spherical and hyperbolic paraboidal—and these are compared with those of a flat plate.  相似文献   

5.
6.
The non-linear dynamic behaviour of infinitely long circular cylindrical shells in the case of plane strains is examined and results are compared with previous studies. A theoretical model based on Hamilton's principle and spectral analysis previously developed for non-linear vibration of thin straight structures (beams and plates) is extended here to shell-type structures, reducing the large-amplitude free vibration problem to the solution of a set of non-linear algebraic equations. In the present work, the transverse displacement is assumed to be harmonic and is expanded in the form of a finite series of functions corresponding to the constrained vibrations, which exclude the axisymmetric displacements. The non-linear strain energy is expressed by taking into account the non-linear terms due to the considerable stretching of the shell middle surface induced by large deflections. It has been shown that the model presented here gives new results for infinitely long circular cylindrical shells and can lead to a good approximation for determining the fundamental longitudinal mode shape and the associated higher circumferencial mode shapes (n>3) of simply supported circular cylindrical shells of finite length. The non-linear results at small vibration amplitudes are compared with linear experimental and theoretical results obtained by several authors for simply supported shells. Numerical results (non-linear frequencies, vibration amplitudes and basic function contributions) of infinite shells associated to the first four mode shapes of free vibrations, are obtained, using a multi-mode approach and are summarized in tables. Good agreement is found with results from previous studies for both small and large amplitudes of vibration. The non-linear mode shapes are plotted and discussed for different thickness to radius ratios. The distributions of the bending stresses associated with the mode shapes are given and compared with those obtained via the linear theory.  相似文献   

7.
This paper presents an analytical method for the vibration analysis of plates reinforced by any number of beams of arbitrary lengths and placement angles. Both the plate and stiffening beams are generally modeled as three-dimensional (3-D) structures having six displacement components at a point, and the coupling at an interface is generically described by a set of distributed elastic springs. Each of the displacement functions is here invariably expressed as a modified Fourier series, which consists of a standard Fourier cosine series plus several supplementary series/functions used to ensure and improve uniform convergence of the series representation. Unlike most existing techniques, the current method offers a unified solution to the vibration problems for a wide spectrum of stiffened plates, regardless of their boundary conditions, coupling conditions, and reinforcement configurations. Several numerical examples are presented to validate the methodology and demonstrate the effect on modal parameters for a stiffened plate with various boundary conditions, coupling conditions, and reinforcement configurations.  相似文献   

8.
The free vibration of circular cylindrical thin shells, made up of uniform layers of isotropic or specially orthotropic materials, is studied using point collocation method and employing spline function approximations. The equations of motion for the shell are derived by extending Love's first approximation theory. Assuming the solution in a separable form a system of coupled differential equations, in the longitudinal, circumferential and transverse displacement functions, is obtained. These functions are approximated by Bickley-type splines of suitable orders. The process of point collocation with suitable boundary conditions results in a generalized eigenvalue problem from which the values of a frequency parameter and the corresponding mode shapes of vibration, for specified values of the other parameters, are obtained. Two types of boundary conditions and four types of layers are considered. The effect of neglecting the coupling between the flexural and extensional displacements is analysed. The influences of the relative layer thickness, a length parameter and a total thickness parameter on the frequencies are studied. Both axisymmetric and asymmetric vibrations are investigated. The effect of the circumferential node number on the vibrational behaviour of the shell is also analysed.  相似文献   

9.
Most of the work done on vibration of plates published in the literature includes analytical and numerical studies with few experimental results available. In this paper, an optical system called the amplitude-fluctuation electronic speckle pattern interferometry for the out-of-plane displacement measurement is employed to investigate the vibration behavior of plates with rounded corners and with chamfers. The boundary conditions are traction free along the circumference of the plate. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally using the present method. Numerical calculations by finite element method are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. It is interesting to note that the mode number sequences for some resonant modes are changed. The transition of mode shapes from the square plate to the circular plate is also discussed.  相似文献   

10.
Analysis and numerical results are presented for the axisymmetric vibrations of polar orthotropic annular plates with linear variation in thickness, according to Mindlin's shear theory of plates. A chebyshev collocation technique has been employed to obtain the frequency equations for the transverse motion of such plates, for three different boundary conditions. Frequencies, mode shapes and moments for the first three modes of vibration have been computed for different plate parameters. A comparison of frequencies with the corresponding values obtained by classical plate theory leads to some interesting conclusions.  相似文献   

11.
The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of “recessive” modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for “dominant” modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.  相似文献   

12.
This work presents the free vibration characteristics of a thin walled cylindrical shell at the zeroth axial mode number. The cylindrical shell has shear-diaphragm boundary conditions at each end. The thin shell equations by Flügge are used as these equations of motion lead to more accurate results at low frequencies. The zeroth axial mode number is found to occur at the cut-on of the second class of waves. The mode shapes at these natural frequencies result in a purely axial displacement of the middle surface of the shell. High modal density for the first class of waves occurs before the cutting-on of the second class of waves. Beyond this frequency, the dynamic response is dominated by the latter modes.  相似文献   

13.
The natural vibration frequencies and mode shapes of a curved cylindrical blade with a weighted edge are investigated. A finite element method is used, in which curved cylindrical shell finite elements are utilized to model the blade. The weighted edge is modelled as a beam with its stiffness and mass added into the stiffness and mass of the blade. Vibration frequencies and mode shapes for blades with different boundary conditions and with different radii of curvature are obtained. Finite element results are compared with experimental results.  相似文献   

14.
仝博  李永清  朱锡  张焱冰 《声学学报》2020,45(3):415-424
为了获得任意角度铺层的多层复合材料圆柱壳的自由振动准确解,在三维弹性理论的基础上,结合分层理论和状态空间法,建立横向位移和应力的传递矩阵,轴向和环向位移采用双螺旋模式的位移函数,对任意角度铺层复合材料圆柱壳简支边界条件下的自由振动进行了理论推导,得到了自由振动方程的精确形式。与文献理论解和有限元计算结果对比,结果表明,关注频率在2倍的环频率以下时,薄壳的固有频率计算精度能控制在1%以内,厚壳的固有频率计算精度能控制在2%以内。对于厚壳的计算可将壳体沿厚度方向划分为多层来处理,这样能有效提高计算精度。计算分析了铺层角对壳体固有频率的影响,环向模态数较低时,固有频率随着铺层角的增加呈抛物线变化趋势;环向模态数较高时,固有频率随着铺层角的增大单调递增。该理论方法同样适用于均质各向同性壳和正交各向异性圆柱壳。   相似文献   

15.
The vibrations of stiffened cylindrical shells having axisymmetric or asymmetric initial geometrical imperfections and axial preload are analyzed. The analysis is based on a solution of the von Kárman-Donnell non-linear shell equations, an “exact” solution of the compatibility equation, and a first order approximation by the Galerkin method of the equilibrium equation. The stiffeners are closely spaced and “smeared” stiffener theory is employed. The results of an extensive parametric study carried out on shells similar to those used in vibration and buckling tests at the Technion show that stiffening of the shell will lower the imperfection-sensitivity of its free vibrations, but the decrease depends on the type of stiffening (stringers or rings), the mode shapes of the vibration and the imperfection, the stiffener strength and eccentricity. The imperfection-sensitivity decrease, caused by the stiffeners, is greater for vibration mode shapes with high imperfection-sensitivity than for other vibration mode shapes. The sensitivity differences between stringer and ring-stiffened shells depend especially on the vibration and the imperfection mode shapes, and on their coupling. Small imperfections change the natural frequencies of stiffened shells in the same directions as for isotropic shells, but to a smaller extent. The frequency dependence on the external load is also strongly affected by the imperfection mode shape. The results correlate well with earlier ones for isotropic shells.  相似文献   

16.
The vibration of simply supported cylindrical shells stiffened by discrete longitudinal stiffeners is investigated by using an energy method. Vlasov's thin walled beam theory is used for stringers. Shell theories based on Donnell's approximate theory and Flügge's more exact theory are used for the skin and numerical results indicate that Donnell's approximate theory gives excellent results for the stiffened shells. Sinusoidal wave form is considered in the longitudinal direction, and mode shapes in the circumferential direction are represented by Fourier series. Numerical results on frequencies and mode shapes computed for a shell stiffened by various number of stiffeners are presented and compared favorably with existing experimental results and other analytical solutions.  相似文献   

17.
The free transverse vibration of annular plates reinforced by circular rings along the simply supported outer and free inner boundaries is analyzed. A closed form solution is obtained by applying the appropriate forces, moments and motions of the circular edge-beams as boundary conditions on the differential equation for the free transverse vibration of plates. A study of the resulting natural frequencies compared with previous results for unreinforced edges indicates that edge-beams with even a relatively small stiffness have a significant effect upon the natural frequencies of the system.  相似文献   

18.
In this paper, free vibration of beams, annular plates, and rectangular plates with free boundaries are analyzed by using the discrete singular convolution (DSC). A novel method to apply the free boundary conditions is proposed. Detailed derivations are given. To validate the proposed method, eight examples, including the free vibrations of beams, annular plates and rectangular plates with free boundaries are analyzed. Two kernels, the regularized Shannon's kernel and the non-regularized Lagrange's delta sequence kernel, are tested. DSC results are compared with either analytical solutions or/and differential quadrature (DQ) data. It is demonstrated that the proposed method to incorporate the free boundary conditions is simple to use and can yield accurate frequency data for beams with a free end and plates with free edges. Thus, the proposed method for applying the boundary conditions extends the application range of the DSC.  相似文献   

19.
In this paper, we study the free vibration of multilayered magneto-electro-elastic plates under combined clamped/free lateral boundary conditions using a semi-analytical discrete-layer approach. More specifically, we use piecewise continuous approximations for the field variables in the thickness direction and continuous polynomial approximations for those within the plane of the plate. Group theory is further used to isolate the nature of the vibrational modes to reduce the computational cost. As numerical examples, two cases of the lateral boundary conditions combined with the clamped and free edges are considered. The non-dimensional frequencies and mode shapes of elastic displacements, electric and magnetic potentials are presented. Our numerical results clearly illustrate the effect of the stacking sequences and magneto-electric coupling on the frequencies and mode shapes of the anisotropic magneto-electro-elastic plate, and should be useful in future vibration study and design of multilayered magneto-electro-elastic plates.  相似文献   

20.
In this paper, a detailed numerical study on the free and forced vibrations of single walled carbon nanotubes is presented. A simple and straightforward method developed such that the proximity of the mathematical model to the actual atomic structure of the nanotube is significantly retained, is used for this purpose. Both zigzag and armchair chiralities of the carbon nanotubes for clamped-free and clamped-clamped boundary conditions are analyzed and their natural frequencies and corresponding mode shapes are obtained. Results pertaining to axial, bending, and torsional modes of vibration are reported with discussions. These modes of vibration appear in the eigen-values and eigen-vectors without any distinction. The direct integration method by Newmark is used extensively along with the fast Fourier transform to identify different types of vibrational modes. In the case of zigzag nanotubes, the axial, bending, and torsional modes appear to be decoupled, whereas the armchair nanotubes show coupling between such modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号