首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery of renormalisation can systematically be implemented: neglecting observationally inaccessible correlators will give rise to an increase in entropy of the system. As an example we calculate the entropy of a general Gaussian state and, assuming the observer's ability to probe this information experimentally, we also calculate the correction to the Gaussian entropy for two specific non-Gaussian states.  相似文献   

2.
We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy, respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.  相似文献   

3.
The Casimir interaction energy due to the vacuum fluctuations of a massive vector field between two perfectly conducting concentric spherical bodies is computed. The TE contribution to the Casimir interaction energy is a direct generalization of the massless case but the TM contribution is much more complicated. Each TM mode is a linear combination of a transverse mode which is the generalization of a TM mode in the massless case and a longitudinal mode that does not appear in the massless case. In contrast to the case of two parallel perfectly conducting plates, there are no TM discrete modes that vanish identically in the perfectly conducting spherical bodies. Numerical simulations show that the Casimir interaction force between the two bodies is always attractive.  相似文献   

4.
The reconnection of two singularities in 2D, 3D, and 4D classical and quantum turbulence is examined. Singularity reconnection plays an essential role in the dissipation of the incompressible part of kinetic energy. A reconnection condition 2(ds+1)≥d+1 is derived, which crucially depends on the dimension ds of the singular structure in relation to the spatial dimension d of the system. The feasibility of this condition is examined using direct numerical simulations of the Navier-Stokes and Gross-Pitaevskii equations for the classical and quantum turbulence, respectively. We observed that the condition was satisfied for d=3 and 4, in agreement with the occurrence of energy cascades in both classical and quantum turbulence in those dimensions.  相似文献   

5.
The causal theory for the coherent state representation of quantum mechanics is derived. The general conditions for the classical limit are given and it is shown that phase space classical mechanics can be obtained as a limit even for stationary states, in contrast to the de Broglie-Bohm quantum theory of motion.  相似文献   

6.
In the usual Fock quantisation of fields in Minkowski space-time, one has the result that the expectation value of the quantum Hamiltonian in any coherent state equals the energy of the classical field at which the state is peaked. It is shown that this property can be used tocharacterise the usual Fock representation. It is also pointed out that the entire analysis goes through for a substantially more general class of systems including, in particular, Bose fields in arbitrary stationary space-times.  相似文献   

7.
8.
In this paper we analyze perturbatively a g?4classical field theory with and without temperature. In order to do that, we make use of a path-integral approach developed some time ago for classical theories. It turns out that the diagrams appearing at the classical level are many more than at the quantum level due to the presence of extra auxiliary fields in the classical formalism. We shall show that a universal supersymmetry present in the classical path-integral mentioned above is responsible for the cancelation of various diagrams. The same supersymmetry allows the introduction of super-fields and super-diagrams which considerably simplify the calculations and make the classical perturbative calculations almost “identical” formally to the quantum ones. Using the super-diagrams technique, we develop the classical perturbation theory up to third order. We conclude the paper with a perturbative check of the fluctuation-dissipation theorem.  相似文献   

9.
We derive transport equations for fermions and bosons in spatially or temporally varying backgrounds with special symmetries, by use of the Schwinger-Keldysh formalism. In a noninteracting theory the coherence information is shown to be encoded in new singular shells for the 2-point function. Imposing this phase space structure to the interacting theory leads to a a self-consistent equation of motion for a physcial density matrix, including coherence and a well defined collision integral. The method is applied e.g. to demonstrate how an initially coherent out-of-equlibrium state approaches equlibrium through decoherence and thermalization.  相似文献   

10.
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.  相似文献   

11.
We consider an interacting scalar quantum field theory on noncommutative Euclidean space. We implement a family of noncommutative deformations, which – in contrast to the well known Moyal–Weyl deformation – lead to a theory with modified kinetic term, while all local potentials are unaffected by the deformation. We show that our models, in particular, include propagators with anisotropic scaling z=2z=2 in the ultraviolet (UV). For a Φ4Φ4-theory on our noncommutative space we obtain an improved UV behaviour at the one-loop level and the absence of UV/IR-mixing and of the Landau pole.  相似文献   

12.
Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.  相似文献   

13.
We consider two possible zeta-function regularization schemes of quantum Liouville theory. One refers to the Laplace–Beltrami operator covariant under conformal transformations, the other to the naive noninvariant operator. The first produces an invariant regularization which however does not give rise to a theory invariant under the full conformal group. The other is equivalent to the regularization proposed by A.B. Zamolodchikov and Al.B. Zamolodchikov and gives rise to a theory invariant under the full conformal group.  相似文献   

14.
We present a rigorous, regularization-independent local quantum field theoretic treatment of the Casimir effect for a quantum scalar field of mass μ≠0 which yields closed form expressions for the energy density and pressure. As an application we show that there exist special states of the quantum field in which the expectation value of the renormalized energy–momentum tensor is, for any fixed time, independent of the space coordinate and of the perfect fluid form gμ,νρ with ρ>0, thus providing a concrete quantum field theoretic model of the cosmological constant. This ρ represents the energy density associated to a state consisting of the vacuum and a certain number of excitations of zero momentum, i.e., the constituents correspond to lowest energy and pressure p0.  相似文献   

15.
Classical and quantum conformal field theory   总被引:8,自引:0,他引:8  
We define chiral vertex operators and duality matrices and review the fundamental identities they satisfy. In order to understand the meaning of these equations, and therefore of conformal field theory, we define the classical limit of a conformal field theory as a limit in which the conformal weights of all primary fields vanish. The classical limit of the equations for the duality matrices in rational field theory together with some results of category theory, suggest that (quantum) conformal field theory should be regarded as a generalization of group theory.On leave of absence from the Department of Physics, Weizmann Institute of Science, Rehovot 76100, Israel  相似文献   

16.
17.
These are three introductory lectures on the relation between representations of affine Kac-Moody algebras, homology of configuration spaces with local coefficient systems, and quantum groups. The first lecture contains background on highest weight representations of affine Kac-Moody algebras. In the second lecture, conformal blocks, the Friedan-Shenker connection and the Knizhnik-Zamolodchikov (KZ) equation are reviewed. In the third lecture, the case of slz is studied in more detail. Integral representations of solutions of the KZ equation are derived, and recent results, obtained in collaboration with C. Wieczerkowski, on the relation between integration cycles and representations of Uq (sl2) are explained.  相似文献   

18.
The two-point integrals contributing to the self-energy of a particle in a three-dimensional quantum field theory are calculated to two-loop order in perturbation theory as well as the vacuum ones contributing to the effective potential to three-loop order. For almost every integral an expression in terms of elementary and dilogarithm functions is obtained. For two integrals, the master integral and the Mercedes integral, a one-dimensional integral representation is obtained with an integrand consisting only of elementary functions. The results are applied to a scalar λφ4 theory.  相似文献   

19.
A gauge-invariant Green’s function approach to the quantum transport of spatially confined electrons in strong electromagnetic fields is presented. The theory includes mean field and exchange effects, as well as collisions and initial correlations. It allows for a self-consistent treatment of spectral properties and collective effects (plasmons), on one hand, and nonlinear field phenomena, such as harmonic generation and multiphoton absorption, on the other. It is equally applicable to electrons in quantum dots, ultracold ions in traps and valence electrons of metal clusters.  相似文献   

20.
戴建辉  张为民 《物理》2006,35(8):629-631
文章对低维量子磁性的基本问题和相关研究进展作了简单评述,强调了量子非线性Sigma模型在研究量子海森伯反铁磁体的低能物理方面所起的作用以及理论本身存在的疑难问题,并简单介绍了作者最近提出的克服这些疑难问题的一个新建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号