首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The law of entropy increase postulates the existence of irreversible processes in physics: the total entropy of an isolated system can increase, but cannot decrease. The annihilation of an electric current in normal metal with the generation of Joule heat because of a non-zero resistance is a well-known example of an irreversible process. The persistent current, an undamped electric current observed in a superconductor, annihilates after the transition into the normal state. Therefore, this transition was considered as an irreversible thermodynamic process before 1933. However, if this transition is irreversible, then the Meissner effect discovered in 1933 is experimental evidence of a process reverse to the irreversible process. Belief in the law of entropy increase forced physicists to change their understanding of the superconducting transition, which is considered a phase transition after 1933. This change has resulted to the internal inconsistency of the conventional theory of superconductivity, which is created within the framework of reversible thermodynamics, but predicts Joule heating. The persistent current annihilates after the transition into the normal state with the generation of Joule heat and reappears during the return to the superconducting state according to this theory and contrary to the law of entropy increase. The success of the conventional theory of superconductivity forces us to consider the validity of belief in the law of entropy increase.  相似文献   

2.
We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent, leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic field.  相似文献   

3.
The magnetic flux dependence of the vortex state for small mesoscopic superconducting rings surrounded by a medium is investigated by the phenomenological Ginzburg-Landau theory. The influences of the ring size and the surface superconductivity on the free energy and total supercurrent are studied. For narrow rings, the persistent current evolves towards a periodic behaviour with magnetic flux. The complete paramagnetic or diamagnetic state, corresponding to positive or negative current flowing in the whole ring, can occur. A remarkable intermittent superconducting behaviour for the ground-state transition is found when the strength of surface-suppressed superconductivity is enlarged or the ring size is decreased. Consequently, a pure superconducting state with positive total current can be obtained.  相似文献   

4.
The analysis of Pippard (1950) for the growth of the normal phase into the superconducting phase in the presence of a magnetic field H>HcH>Hc is applied in reverse to the case H<HcH<Hc (Hc=Hc= critical magnetic field). We carry out the analysis both for a planar and a cylindrical geometry. As the superconducting phase grows into the normal phase, a supercurrent is generated at the superconductor–normal phase boundary that flows in direction opposite to the Faraday electric field resulting from the moving phase boundary. This supercurrent motion is in direction opposite to what is dictated by the Lorentz force on the current carriers, and in addition requires that mechanical momentum of opposite sign be transferred to the system as a whole to ensure momentum conservation. In the cylindrical geometry case, a macroscopic torque of unknown origin acts on the body as a whole as the magnetic field is expelled. We argue that the conventional BCS-London theory of superconductivity cannot explain these facts, and that as a consequence the Meissner effect remains unexplained within the conventional theory of superconductivity. We propose that the Meissner effect can only be understood by assuming that there is motion of charge in direction perpendicular to the normal–superconductor phase boundary and point out that the unconventional theory of hole superconductivity describes this physics.  相似文献   

5.
Recent a.c. measurements of magnetic susceptibility in PbTe have been interpreted as evidence of anomalous superconductivity of lead precipitates up to temperatures of 20 K. We present here new measurements on this material which can be explained by the properties of eddy currents in the sample without invoking any superconductivity at all.  相似文献   

6.
The supercurrent for the surface superconductivity of a flat-band multilayered rhombohedral graphene is calculated. Despite the absence of dispersion of the excitation spectrum, the supercurrent is finite. The critical current is proportional to the zero-temperature superconducting gap, i.e., to the superconducting critical temperature and to the size of the flat band in the momentum space.  相似文献   

7.
The possible existence of triplet superconductive transition in metals in a strong magnetic field is shown. In such system in the sufficiently strong magnetic field there are no currents, which can destroy the superconductivity.  相似文献   

8.
铜壳涡流磁场的实验研究   总被引:1,自引:1,他引:0  
本文介绍了模拟等离子体电流环电流在HL-1装置铜壳的1/4段上感应的涡流,在等离子体区产生的磁场大小、分布和时间特征的测量结果.涡流产生的垂直场随着等离子体电流环水平位移和电流上升率的增加而增加,而且在空间各点的大小和衰减时间常数都不相同。极向缝隙使涡流产生的垂直场和水平场沿大环方向呈周期性变化,环向缝隙对垂直场没有影响,但是却大大减弱了涡流产生的水平场。  相似文献   

9.
Jia-Ying Yang 《中国物理 B》2022,31(6):60504-060504
Based on the mean-field theory, we investigate the thermodynamic properties of the two-dimensional (2D) charged spin-1/2 Fermi gas. Landé factor g is introduced to measure the strength of the paramagnetic effect. There is a competition between diamagnetism and paramagnetism in the system. The larger the Landé factor, the smaller the entropy and specific heat. Diamagnetism tends to increase the entropy, while paramagnetism leads to the decrease of the entropy. We find that there exists a critical value of Landé factor for the transition point due to the competition. The entropy of the system increases with the magnetic field when g < 0.58. With the growth of paramagnetism, when g > 0.58, the entropy first decreases with the magnetic field, then reaches a minimum value, and finally increases again. Both the entropy and specific heat increase with the temperature, and no phase transition occurs. The specific heat tends to a constant value at the hightemperature limit, and it approaches to zero at very low temperatures, which have been proved by the analytical calculation.  相似文献   

10.
The magnetic field and temperature dependence of the magnetization of bulk aluminum near the normal-superconductor transition has been measured. Due to the large amount of supercooling in one of the samples it was possible to extend the measurements well below the critical temperature. A comparison of the experimental results with theory is presented.  相似文献   

11.
Near the superconducting transition temperature pairpotential behaviour and supercurrent in nonhomogeneous sandwich systems of SNS-and SINIS-types (S superconductor, N normal metal, I insulator) are theoretically investigated. The proximity effect is taken into account by using an extrapolation length which relates the order parameter value to its first derivative at interfaces. In frame of the microscopic theory of superconductivity this extrapolation length follows with the help of an appropriate variational principle which has been checked on systems which allow exact solutions. The resulting supercurrent expressions are discussed in detail with respect to temperature dependence and impurity influence.  相似文献   

12.
The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.  相似文献   

13.
牟刚  罗会仟  闻海虎 《物理》2010,39(08):560-563
文章简单介绍了氧化物超导体机理问题研究中最核心的问题之一,即超导与赝能隙关系的最新进展状态.介绍了利用高精度比热测量所发现的在欠掺杂样品的正常态有电子配对存在的证据,指出超导凝聚过程是非BCS型.比热数据显示,在重过掺区域,超导转变温度附近的比热跳变非常之陡,超导凝聚所造成的熵变满足守恒规律.然后到欠掺杂区,这个比热跳变变得很矮,而且在正常态仍然测量到一个与磁场相关的比热部分,表现在比热系数有一个很长的尾巴拖到高温区.计算到Tc 附近的超导熵不满足守恒律,但是积分到高温后,即考虑到尾巴部分后,熵就接近守恒.这说明,在欠掺杂超导体的正常态已经有电子配对,但是没有建立起宏观超导相干态.氧化物超导体中的超导凝聚过程不是BCS型的.  相似文献   

14.
Quantum systems that are confined to circuit geometries are called quantum circuits. Macroscopic superconducting circuits are quantum circuits which can be modelled using a Quantisation by Parts scheme based on the macroscopic wave function approach of Feynman. This paper studies the circuit composed of an input wire and an output plate. We find that in order to achieve a consistent theory of supercurrent flow we have to generalize the quantisation by parts scheme to quantise in a path space. The generalized theory predicts a current flow down the wire into the plane. In addition to a current flowing radially outwards in the plane, the theory allows a circulating current round the origin. Strikingly, the circulating current can flow clockwise or anti-clockwise in such a way as to generate a magnetic moment of magnitude half of a Bohr magneton for an orbiting electron in an atom and a magnetic flux half that of the magnetic flux quantum of a superconducting ring. There is also the possibility of a macroscopic superposition of the two states of opposing circulating currents resembling a Schr?dinger’s cat situation. Furthermore, we outline a setup involving an external magnetic field that may allow experimental tests of the theory.  相似文献   

15.
We construct, in the tree approximation, the complete off-shell supercurrent, including Faddeev-Popov fields and gauge contributions for a general supersymmetric Yang-Mills theory maintaining parity. Due to the conformally non-covariant character of the Faddeev-Popov procedure this supercurrent cannot be improved. The other currents of the superconformal group can therefore no longer be obtained by simply forming moments.  相似文献   

16.
We study the thermodynamic properties of α-helix protein on the basis of Davydov theory. The Hamiltonian of Davydov theory can be represented as a form of pairing Hamiltonian in the momentum space. We prove that the quasi-classical Davydov theory is essentially a theory with Bose condensation no matter whether the molecular excitations are treated as fermions or bosons. The transition temperature of superconductivity theory gives the existence condition of the Davydov soliton.  相似文献   

17.
We investigated the effect of an electric-pulse on the insulator–metal phase transition of VO2/Al2O3 films using synchrotron-based infrared microspectroscopy. By monitoring the time-resolved optical response, we could demonstrate that local conducting areas are formed under the influence of the electric-pulse, and the Joule heat generated from the local current flow drives a consecutive thermal phase transition in the adjacent sample area.  相似文献   

18.
Recently we demonstrated theoretically that the carriers of quantized angular momentum in superconductors are not the Cooper pairs but the lattice ions, which must execute coherent localized motion consistent with the phenomenon of superconductivity. We demonstrate here that in the presence of an external magnetic field, the free superelectron and bound ion currents largely cancel providing a self-consistent microscopic and macroscopic interpretation of near-zero magnetic permeability inside superconductors. The neutral mass currents, however, do not cancel, because of the monopolar gravitational charge. It is shown that the coherent alignment of lattice ion spins will generate a detectable gravitomagnetic field, and in the presence of a time-dependent applied magnetic vector potential field, a detectable gravitoelectric field.  相似文献   

19.
《中国物理 B》2021,30(6):65201-065201
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.  相似文献   

20.
运用数值模拟方法对液态金属锂在导电壁面的哈特曼流中因焦耳热引起的升温进行了计算。结果表明,在壁液交界面自冷包层的出口处由于导电壁面内感应电流产生的焦耳热所引起的升温将可能超过100°C。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号