首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

2.
The electrochemical behaviour of the set of tetracoordinate rhodium(I) complexes [Rh(OO)(CO)L] [OO=MeC(O)CHC(O)Me (acac), L=CO (1), P(NC4H4)3 (2), PPh(NC4H4)2 (3), PPh2(NC4H4) (4), PPh3 (5), PCy3 (6), P(OPh)3 (7) or PPh2(C6H4OMe-4) (8); OO=PhC(O)CHC(O)Me (bac), L=CO (9) or PPh3 (10); OO=PhC(O)CHC(O)CF3(bta), L=CO (11) or PPh3 (12)] and of the pentacoordinate [RhH(CO)L3] [L=P(NC4H4)3 (13), PPh3 (14), P(OPh)3 (15) or P(OC6H4Me-4)3 (16)] and [RhHL4] [L=PPh3 (17) or P(OC6H4Me-3)3 (18)] was studied by cyclic voltammetry and controlled potential electrolysis, in aprotic medium, at a Pt electrode. They present a single-electron oxidation wave (I) (irreversible or quasi-reversible) that can be followed, at a higher potential, by a second and irreversible one (II). The values of first oxidation potential for the tetracoordinate complexes fit the additive Lever's electrochemical parameterisation, and the ligand electrochemical Lever EL and Pickett PL parameters were estimated for the N-pyrrolyl phosphines PPhn(NC4H4)3−n (n=0, 1 or 2) and for the organophosphines PCy3 and PPh2(C6H4OMe-4), the former behaving as weaker net electron donors (the electron donor ability decreases with the increase of the number of N-pyrrolyl groups) than the latter phosphines. The pentacoordinate hydride complexes 13–18 fit a distinct relationship which enabled the estimate of the EL ligand parameter for the phosphites P(OC6H4Me-3)3 and P(OC6H4Me-4)3. Electrochemical metal site parameters were obtained for the square planar and the pentacoordinate Rh(I)/Rh(II) couples and, for the former, the redox potential is shown to present a much higher sensitivity to a change of a ligand than the octahedral redox couples investigated so far. Linear relationships were also observed between the oxidation potential and the PL ligand parameter (for the series [Rh(acac)(CO)L]) or the infrared ν(CO) frequency, and a generalisation of the former type of correlation is proposed for series of square-planar 16-electron complexes [M′SL] with a common 14-electron T-shaped binding metal centre {M′S}. Oxidation of 5 by Ag[PF6] leads to the dimerisation of the derived Rh(II) species.  相似文献   

3.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

4.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


5.
《高等学校化学学报》1999,20(8):1172-1178
利用Co2(CO)8与[Cl3CC(O)OCH2]2的反应合成了以C(O)OCH2CH2OC(O)桥联两个Co3C四面体骨架为特征的新型双四面体簇合物[(CO)9Co33-C)C(O)OCH2]2(1);1与不同物质的量比的Na[M(CO)3C5H4R](M=Mo,W;R=H,C(O)Me)反应,得到一步交换的产物(CO)9Co33-C)C(O)OCH2CH2OC(O)(μ3-C)Co2M(CO)8(C5H4R)[M=Mo,R=H(2);M=Mo,R=C(O)Me(3);M=W,R=H(4);M=W,R=C(O)Me(5)]或两步交换的产物[(C5H4R)(CO)8Co2M(μ3-C)C(O)OCH2]2[M=Mo,R=H(6);M=Mo,R=C(O)Me(7);M=W,R=H(8);M=W,R=C(O)Me(9)].5或9分别与Na[Mo(CO)3C5H5]以12的物质的量比反应得到含一个手性四面体骨架(CoMoWC)的(C5H5)(CO)8Co2Mo(μ3-C)C(O)OCH2CH2O·C(O)(μ3-C)CoMoW(CO)7(C5H4C(O)Me)(C5H5)(10)或含两个手性四面体骨架(CoMoWC)的[(C5H5)(C5H4C(O)Me)(CO)7CoMoW(μ3-C)C(O)OCH2]2(11);对化合物1_11进行了CH元素分析、IR和1HNMR等表征.结果表明,在金属交换反应中处于不同簇环境下的Co(CO)3基团反应活性不同.对化合物1进行了晶体X射线衍射分析.化合物1的晶体属单斜晶系,P21/n(#14)空间群,晶胞参数a=0.933 0(2)nm,b=1.519 7(4)nm,c=1.178 3(4)nm,=91.16(2)°,Z=2,F(000)=972.分子结构呈中心对称.  相似文献   

6.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

7.
合成了4个新型NiBDT配位化合物,BDT为具有9个S原子的杂戊烯.元素分析、IR谱、UV谱确定这4个新配合物的化学式分别为[(CH3)4N]2[Ni(C5S9)2](1),[(C2H5)4N]2·[Ni(C5S9)2](2),[(C4H9)4N]2[Ni(C5S9)2](3),[(C6H5)(CH3)3N]2[Ni(C5S9)2](4).采用Ito法对配合物1的X射线粉末图进行了指标化,确定该晶体属单斜晶系,简单晶格,晶胞参数:a=0.680nm,b=0.714nm,c=2.302nm,γ=111.4°,Z=2.  相似文献   

8.
A series of luminescent rhenium(I) monoynyl complexes, [Re(N---N)(CO)3(CC---R)] (N---N=bpy, tBu2bpy; R=C6H5, C6H4---Cl-4, C6H4---OCH3-4, C6H4---C8H17-4, C6H4---C6H5, C8H17, C4H3S, C4H2S---C4H3S, C5H4N), together with their homo- and hetero-metallic binuclear complexes, {Re(N---N)(CO)3(CC---C5H4N)[M]} (N---N=bpy, tBu2bpy; [M]=[Re{(CF3)2-bpy}(CO)3]ClO4, [Re(NO2-phen)(CO)3]ClO4, W(CO)5) have been synthesized and their electrochemical and photoluminescence behaviors determined. The structural characterization and electronic structures of selected complexes have also been studied. The luminescence origin of the rhenium(I) alkynyl complexes has been assigned as derived states of a [dπ(Re)→π*(N---N)] metal-to-ligand charge transfer (MLCT) origin mixed with a [π(CCR)→π*(N---N)] ligand-to-ligand charge transfer (LLCT) character. The assignments are further supported by extended Hückel molecular orbital (EHMO) calculations, which show that the LUMO mainly consists of π*(N---N) character while the HOMO is dominated by the antibonding character of the Re---CCR moiety resulted from the overlap of the dπ(Re) and π(CCR) orbitals.  相似文献   

9.
Two organogold derivatives of diphenylmethane and diphenylethane, Ph3PAu(o-C6H4)CH2(C6H4-o)AuPPh3 (1) and Ph3PAu(o-C6H4)(CH2)2(C6H4-o)AuPPh3 (2), have been synthesized by the reaction of ClAuPPh3 with Li(o-C6H4)CH2(C6H4-o)Li and Li(o-C6H4)(CH2)2(C6H4-o)Li respectively. The interaction of 1 with dppe results in the replacement of the two PPh3 groups to give a macrocyclic compound (3) that includes an Au Au bond. Compounds 1 and 2 react with one or two equivalents of [Ph3PAu]BF4 to form new types of cationic complex [CH2(C6H4-o)2(AuPPh3)3]BF4 (4), [CH2(C6H4-o)2(AuPPh3)4](BF4)2 (5), and [(CH2)2(C6H4-o)2(AuPPh3)4](BF4)2 (6). Complexes 1–6 have been characterized by X-ray diffraction studies, FAB MS, and IR as well as by 1H and 31P NMR spectroscopy. A complicated system of Au H-C agostic interactions, involving the bridging alkyl groups (—CH2— and CH2-CH2—) of diphenylmethane and diphenylethane ligands, has been found to occur in complexes 1–3 and 6.  相似文献   

10.
Liquid crystalline 4-XC6H4N=NC6H4X-4′ [X = C4H9 (1a), C1OH21 (1b), OC4H9 (1c), OC8H17(1d)] can be easily prepared in high yields from the corresponding anilines. In order to study the influence of metals on the thermal properties of these materials, we have obtained adducts [AuCl 3(4-C4H9OC6H4N=NC6H4OC4H9-4′)] (2) and [Ag(OC1O3)L2] [L = 4-XC6H4N=NC6H4X-4′; X = OC4H, (3a), OC8H17 (3b)]. The silver adducts show themotropic behaviour. Mercuriation of dialkylazobenzenes 1a-b takes place with [Hg(OAc)2] and LiCl to give [Hg(R)Cl] [R = C6H3(N=NC6H4X-4′)-2, X-5; X = C4H9 (bpap) (4a), C10H21 (dpap) (4b)] while dialkoxyazobenzenes 1c–d require [Hg (OOCCF3)2] to obtain [Hg(R)Cl] [R = C6H3(N---NC6H4X-4′)-2, X-5; X = OC4H9 (bxpap) (4c), OC 8H17 (4d)]. 4a-c react with NaI to give [HgR2] [R= bpap (5a), dpap (5b), bxpap (5c), oxpap (5d)l. Both chloroaryl-, 4a and 4c, and diaryl-mercurials, 5a and 5c, act readily as transmetailating agents towards [Me4N] [AuCl4] in the presence of [Me4N]Cl to give [Au(η2-R)Cl2] [R = bpap (6a), bxpap (6b)]. After reaction of [AuCl 3(tht)] (tht = tetrahydrothiophene) with [Me4N]Cl and 4b (1:2:1), [Me4N][Au(dpap)Cl3] (7) can be isolated. C---H activati bxpap (8b)]. None of the complexes 4–8 shows mesomorphic behaviour.  相似文献   

11.
The coordinatively unsaturated uranium(IV) complex U[N(C6H5)2]4 has been prepared via the stoichiometric reaction of diphenylamine with [(Me3Si)2N]2 H2. U[N(C6H5)2]4 coordinates Lewis bases such as Et2O, THF, pyridine or (EtO)3PO, based on electronic absorption spectroscopy and 1H NMR studies. Exchange between U[N(C6H5)2]4 and U[N(C6H5)2]4(L), where L is THF or pyridine, is rapid on the NMR time-scale between 307 and 323 K. Measurement of equilibrium constants for L = THF provides ΔH and ΔS values of −60 kJ mol−1 and −1.8 × 102 J K−1 mol−1, respectively. U[N(C6H5)2]4 coordinates and binds (EtO)3PO much more tightly (Keq = & > 104 M−1) than THF or pyridine with the exchange rate between U[N(C6H5)2]4 and U[N(C6H5)2]4[OP(OEt)3] being close to the NMR time-scale.  相似文献   

12.
The dinuclear organometallic compounds ((C5H5Fe(CO)2)2, CO2(CO)8 and (C5H5NiCO)2) are oxidized by [(C5H5)2Fe]X (X = BF4, PF6) in the presence of neutral ligands L to form the cationic organometallic complexes [C5H5Fe(CO)2L]X, [trans-Co(CO)3L2]X and [C5H5NiL2]X in high yield.  相似文献   

13.
The chiral bis-imine (1R,2R)-C6H10-[E---N=CH---C6H3---3,4-(OMe)2]2 1 (LH) reacts with [Pd(OAc)2] (1:1 molar ratio; OAc=acetate) giving the orthometallated [Pd(OAc)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)-C6H10---N=CH---C6H3-3′,4′-(OMe)2-κ-C,N,N)] 2 (abbreviated as [Pd(OAc)(L-κ-C,N,N)]), through C---H bond activation on only one of the aryl rings and N,N-coordination of the two iminic N atoms. 2 reacts with an excess of LiCl to give [Pd(Cl)(L-κ-C,N,N)] 3. The reaction of 3 with AgClO4 and neutral or anionic ligands L′ (1:1:1 molar ratio) affords [Pd(L-κ-C,N,N)(L′)](ClO4) (L′=PPh3 4a, NCMe 5, pyridine 6, p-nitroaniline 7) or [Pd(I)(L-κ-C,N,N)] 8. Complex 4a reacts with wet CDCl3 giving [Pd(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)(PPh3)](ClO4) 4b as a result of the hydrolysis of the C=N bond not involved in the orthometallated ring. The molecular structure of 4b·CH2Cl2 has been determined by X-ray diffraction methods. Cleavage of the Pd---N bond trans to the Caryl atom can be accomplished by coordination of strongly chelating ligands, such as acetylacetonate (acac) or bis(diphenylphosphino)ethane (dppe), forming [Pd(acac-O,O′)(L-κ-C,N)] 9 and [Pd(L-κ-C,N)(dppe-P,P′)](ClO4) 12, while classical N,N′-chelating ligands such as 1,10-phenantroline (phen) or 2,2′-bipyridyl (bipy) behave as monodentate N-donor ligands yielding [Pd(L-κ-C,N,N)(κ1-N-phen)](ClO4) 10 and [Pd(L-κ-C,N,N)(κ1-N-bipy)](ClO4) 11. Treatment of 1 with PtCl2(DMSO)2 (1:1 molar ratio) in refluxing 2-methoxyethanol gives Cl2Pt[(NH2)2C6H10---N,N′] 13a and [Pt(Cl)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)] 13b, while [Pt(Cl)(L-κ-C,N,N)] 14 can be obtained by reaction of [Pt(μ-Cl)(η3-2-Me---C3H4)]2 with 1 in refluxing CHCl3. Complexes 2 and 3 catalyzed the arylation of methyl acrylate giving good yields of the corresponding methyl cinnamates and TON up to 847 000. Complex 3 also catalyzes the hydroarylation of 2-norbornene, but with lower yields and without enantioselectivity.  相似文献   

14.
MoO2(C5H7O2)2, where C5H7O2 is 2,4-pentanedione (acac), reacts with 2-2′ pyridylbenzoxazole in acetone to give a product with stoichiometry, Mo3C24H16N6O12. This product dissolves readily in dimethylformamide to give a brown solution which on standing for several weeks yielded crystals. An X-ray structure determination showed these crystals to contain uncoordinated 2-2′pyridylbenzoxazole and [(CH3)2NH2]4+[Mo8O26]4−.  相似文献   

15.
硅桥连双(三甲硅基环戊二烯基)双锂盐与TiCl4·2THF反应,生成相应的钛化合物[E(C5H3SiMe3)2]TiCl2[E=Me2SiSiMe2(3),Me2SiOSiMe2(5)],同时还分离到了脱一个三甲硅基的产物[E(C5H4)(C5H3SiMe3)]TiCl2[E=Me2SiSiMe2(4),Me2SiOSiMe2(6)].其中四甲基二硅氧桥连配体更容易发生这种脱硅基反应.通过元素分析、MS和1HNMR谱表征了化合物3-6的分子结构.  相似文献   

16.
Thermal decomposition of mixed ligand thymine (2,4-dihydroxy-5-methylpyrimidine) complexes of divalent Ni(II) with aspartate, glutamate and ADA (N-2-acetamido)iminodiacetate dianions was monitored by TG, DTG and DTA analysis in static atmosphere of air. The decomposition course and steps of complexes [Ni(C5H6N2O2)(C4H5NO4)2−(H2O)2]·H2O, [Ni(C5H6N2O2)(C5H7NO4)2−(H2O)2]·H2O and [Ni(C5H6N2O2)(C6H8N2O5)2−(H2O)2]·1.5H2O were analyzed. The final decomposition products are found to be the corresponding metal oxides. The kinetic parameters namely, activation energy (E*), enthalpy (ΔH*), entropy (ΔS*) and free energy change of decomposition (ΔG*) are calculated from the TG curves using Coats–Redfern and Horowitz–Metzger equations. The stability order found for these complexes follows the trend aspartate > ADA > glutamate.  相似文献   

17.
The η3-allyliridium complexes [Ir(η3-2-RC3H4)(PiPr3)2] (2, 3) have been prepared in a one-pot reaction from [IrCl(C2H4)2]2, 2-RC3H4Li and PiPr3 in 70% yield. Compounds 2 and 3 react spontaneously with H2 to give [IrH5(PiPr3)2] (7) and with excess PhC=CH and MeCCH to give [Ir(CCPh)3(PiPr3)2] (5) and [Ir(CCMe)2(CMe=CH2)(PiPr3)2] (6), respectively. From 2 (or 3) and two equivalents of PhCCH the complex [IrH(CCPh)2(PiPr3)2] (4) has been obtained. Treatment of 2 or 3 with CF3CO2H does not lead to a cleavage of the allyl-metal bond but affords the allyl(hydrido)-iridium(III) complexes [IrH(η3-2-RC3H4)(η1-P2CCF3)(PiPr3)2] (8, 9) in almost quantitative yield.  相似文献   

18.
The cluster [Os3(CO)10(MeCN)2] reacts with indazole (C7H6N2) to give two isomeric products [0s3(μ-H)(μ-C7H5N2)(CO)10] in which the five-membered ring has been metallated with N-H cleavage to give an N,N-bonded isomer or with C-H cleavage to give a C,N-bonded isomer. These two isomers have very similar X-ray structures but can be clearly distinguished by 1H NMR methods. They are shown to correspond to related clusters derived from pyrazole. Benzotriazole (C6H5N3) also reacts (as shown earlier by others) to give two isomers: an N,N-bonded species [Os3(μ-H)(μ-C6H4N3)(CO)10] coordinated only through the five-membered ring and a minor C,N-bonded isomer [Os3(μ-H)(μ-C6H4N3)(CO)10], metallated at the C6 ring and coordinated through both rings. The former isomer reacts with Me3NO in acetonitrile to give [Os3(μ-H)(μ-C6H4N3)(CO)9(MeCN)] which thermally looses MeCN to produce the coupled product [Os6(μ-H)2(μ3-C6H4N3)2(CO)18] which was shown by X-ray structure determination to have all six nitrogen atoms coordinated to osmium, a novel situation for coordinated benzotriazole. The two Os3 units are linked together by an OsNNOsNN ring in a boat conformation with the whole cluster adopting C2 symmetry.  相似文献   

19.
早期合成的Keggin结构杂多酸均是同种齿顶原子,后来人们合成了一系列含两种齿顶原子的三元杂多酸~[1,2],我们曾制备了含3种齿顶原子的四元杂多酸~[3,4].随着齿顶原子种类的增多,杂多酸在水溶液中的稳定性降低.本文采用空缺杂多酸阴离子逐步与不同齿顶原子结合,最后用溶解度极小的(C_1H_9)_4N~+盐沉淀方法合成了未见报道的磷的四元杂多酸盐.  相似文献   

20.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号