首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Why are some (4n+2)π systems aromatic, and some not? The ipsocentric approach to the calculation of the current density induced in a molecule by an external magnetic field predicts a four‐electron diatropic (aromatic) ring current for (4n+2)π carbocycles and a two‐electron paratropic (antiaromatic) current for (4n)π carbocycles. With the inclusion of an electronegativity parameter, an ipsocentric frontier‐orbital model also predicts the transition from delocalised currents in carbocycles to nitrogen‐localised currents in alternating azabora‐heterocycles, which rationalises the differences in (magnetic) aromaticity between these isoelectronic π‐conjugated systems. Ab initio valence‐bond calculations confirm the localisation predicted by the naïve model, and coupled‐Hartree–Fock calculations give current‐density maps that exhibit the predicted delocalised‐to‐localised/carbocycle–heterocycle transition.  相似文献   

2.
Aromatic M?bius [4n]annulenes with 4n pi electrons, originally conceived by Heilbronner, are characterized computationally. These (CH)(12), (CH)(16), and (CH)(20) minima have nearly equal C-C bond lengths, small twist angles around the rings, and magnetic properties (NICS, nucleus-independent chemical shifts--see above at various positions in [16]annulene--and magnetic susceptibility exaltations) indicating significantly diatropic ring currents. The M?bius forms are not the most stable isomers but may contribute significantly to the chemistry of these annulenes. [structure: see text]  相似文献   

3.
An ab initio study of the possible interaction between several anions (F(-), Cl(-), N(3)(-), N(4)(-), and N(5)(-)) and tri-s-triazine molecule, an electron-deficient aromatic ring, has been carried out at the B3LYP and MP2 levels of theory. Minima are located corresponding to hydrogen bonding, pi-pi stacking, and reactive complexes. This novel mode of bonding suggests the development of new cyclophane-type receptors for the recognition of anions.  相似文献   

4.
The differential Biot-Savart law provides simple models for the pi ring currents induced in diatropic and paratropic planar conjugated molecules by a perpendicular magnetic field. The model predictions are confirmed by ab initio maps of nuclear magnetic shielding density. The effects on the protons and on the ring carbon atoms from the closest and furthest segments of the current loop are easily interpreted. [structure: see text]  相似文献   

5.
Current-density maps, calculated at the ab initio RHF//6-31G**/CTOCD-DZ level, show no significant pi ring current in planar equilateral geometries of neutral and dianionic [N]radialenes, oxocarbons and thiocarbons C(N)Y(N) (q-) (Y=CH(2), O, S; N=4, 5, 6; q=0 (1 a-12 a), 2 (1 b-12 b)). Only the N=3 deltate dianions C(3)Y(3) (2-) (Y=CH(2), O, S (1 b, 5 b and 9 b)) have discernible pi ring current, and then with at most 20-25 % of the strength of the standard benzene current. On the magnetic criterion, lack of current is definitive evidence against aromaticity. Pictorial molecular-orbital analysis within the ipsocentric approach shows this to be an inevitable consequence of the nodal structure of the pi and pi* orbitals of [N]radialene-like systems. On grounds of angular-momentum symmetry, spatial distribution, or both, the HOMO-LUMO excitation does not contribute a significant central diamagnetic ring current.  相似文献   

6.
Ring currents calculated in the ipsocentric CTOCD-DZ formalism are presented for four representative metallabenzenes, compounds in which a benzene CH group is formally replaced by a transition metal atom with ligands. Aromaticity is probed using ring currents computed using non-relativistic and relativistic orbitals (derived with relativistic effective core potentials or ZORA). Maps computed at different levels of relativistic theory turn out to be similar, showing that orbital nodal character is the main determinant of ring current. Diatropic/paratropic global ring currents in these compounds, and also circulations localised on the metal centre, are interpreted in terms of contributions of localised π-type orbitals and metal d-orbitals, respectively. All four considered metallabenzenes should be regarded as 6π electron species, despite the fact that three support diatropic ('aromatic') ring currents and one a paratropic ('anti-aromatic') current. The current-density maps determine the correct way to count electrons in these species: differential occupation of d-orbitals of formal π-symmetry contributes to circulation on the metal centre, but not around the benzenoid ring. The overall trend from strongly diatropic to weakly paratropic ring currents along the series 1 to 4 is explained by the increasing strength of interaction between formally non-bonding orbitals on the metal centre and C(5)H(5) moiety, which together make up the six-membered ring.  相似文献   

7.
N,N-Dimethylaminopropylsilane H(3)Si(CH(2))(3)NMe(2) was synthesised by the reaction of (MeO)(3)Si(CH(2))(3)NMe(2) with lithium aluminium hydride. Its solid-state structure was determined by X-ray diffraction, which revealed a five-membered ring with an SiN distance of 2.712(2) A. Investigation of the structure by gas-phase electron diffraction (GED), ab initio and density functional calculations and IR spectroscopy revealed that the situation in the gas phase is more complicated, with at least four conformers present in appreciable quantities. Infrared spectra indicated a possible SiN interaction in the Si-H stretching region (2000-2200 cm(-1)), as the approach of the nitrogen atom in the five-membered ring weakens the bond to the hydrogen atom in the trans position. Simulated gas-phase IR spectra generated from ab initio calculations (MP2/TZVPP) exhibited good agreement with the experimental spectrum. A method is proposed by which the fraction of the conformer with a five-membered ring can be determined by a least-squares fit of the calculated to experimental absorption intensities. The abundance of this conformer was determined as 23.7(6) %, in good agreement with the GED value of 24(6) %. The equilibrium SiN distance predicted by theory for the gas-phase structure was highly variable, ranging from 2.73 (MP2) to 3.15 A (HF). The value obtained by GED is 2.91(4) A, which could be confirmed by a scan of the potential-energy surface at the DF-LCCSD[T] level of theory. The nature of the weak dative bond in H(3)Si(CH(2))(3)NMe(2) can be described in terms of attractive inter-electronic correlation forces (dispersion) and is also interpreted in terms of the topology of the electron density.  相似文献   

8.
9.
Density functional theory (DFT) and ab initio (Hartree-Fock) calculations employing the 6-31G* basis set are used to determine gas-phase proton microaffinities (PA(n,i)) of two bulky symmetrical tripodal tetraamine ligands N[(CH2)(4)NH2]3, trbn, and N[(CH2)(5)NH2]3, trpa. The corresponding proton macroaffinities (PA(n)) are calculated not only according to our recently established method but also considering two alternative formulas based on a Boltzmann distribution. The successive protonation macroconstants in aqueous solution for these bulky amines are predicted from the well-defined correlation between the calculated proton macroaffinities, without considering Boltzmann distribution, and the corresponding log Kn for these amines. The overall protonation constants are also predicted by two different methods.  相似文献   

10.
The "azido gauche effect" was examined both experimentally and theoretically and was found to determine the conformation of, for example, (4R)- and (4S)-azidoproline (Azp) derivatives. For (4R)Azp derivatives, the azido gauche effect induces a preferred C(4)-exo conformation of the pyrrolidine ring, which leads to stabilization of the s-trans amide conformer of, e.g., Ac-(4R)Azp-OCH(3) (5R) via an n-->pi interaction between the nonbonding electrons of the oxygen of the acetyl group and the carbonyl group of the ester. For (4S)Azp derivatives, the azido gauche effect results in a C(4)-endo conformation of the pyrrolidine ring that does not allow for this stabilizing n-->pi interaction of the s-trans conformer. Consequently, a significantly higher s-trans:s-cis amide conformer ratio is observed for (4R)Azp compared to (4S)Azp derivatives (e.g., 6.1:1 versus 2.6:1 in D(2)O for Ac-(4R)Azp-OCH(3) (5R) compared to Ac-(4S)Azp-OCH(3) (5S)). These conformational preferences are reflected in the higher tendency of (4S)Azp-containing peptides to form cyclic peptides with all-cis amide bonds compared to (4R)Azp derivatives. Ab initio calculations demonstrate that the strength of the azido gauche effect is comparable to that of the well-known "fluorine gauche effect". For azidoethane derivatives N(3)-CH(2)CH(2)-X (X = N(3), NHCOH, NHAc, or N(CH(3))Ac), the ab initio calculations revealed energy differences of 5-13 kJ mol(-)(1) between the anti and gauche conformations in favor of the gauche conformer. Calculations were also performed for the (4R)Azp and (4S)Azp derivatives 5R and 5S, supporting the experimentally observed data.  相似文献   

11.
Relativistic density functional calculations were carried out on several nickel toroid mercaptides of the general formula [Ni(μ-SR)(2)](n), with the aim to characterize and analyze their stability and magnetic response properties, in order to gain more insights into their stabilization and size-dependent behavior. The Ni-ligand interaction has been studied by means projected density of states and energy decomposition analysis, which denotes its stabilizing character. The graphical representation of the response to an external magnetic field is applied for the very first time taking into account the spin-orbit term. This map allows one to clearly characterize the magnetic behavior inside and in the closeness of the toroid structure showing the prescence of paratropic ring currents inside the Ni(n) ring, and by contrast, diatropic currents confined in each Ni(2)S(2) motif denoting an aromatic behavior (in terms of magnetic criteria). The calculated data suggests that the Ni(2)S(2) moiety can be regarded as a stable constructing block, which can afford several toroid structures of different nuclearities in agreement with that reported in the experimental literature. In addition, the effects of the relativistic treatment over the magnetic response properties on these lighter compounds are denoted by comparing nonrelativistic, scalar relativistic, and scalar plus spin-orbit relativistic treatments, showing their acting, although nonpronunced, role.  相似文献   

12.
Magnetically induced current densities in the four-membered rings of Al4(2-) and Al4(4-) species have been calculated at the coupled-cluster singles and doubles (CCSD) level by applying the recently developed gauge-including magnetically induced current (GIMIC) method. The strength of the ring-current susceptibilities were obtained by numerical integration of the current densities passing through a cross section perpendicular to the Al4 ring. The GIMIC calculations support the earlier notion that Al4 (2-) with formally two pi electrons sustains a net diatropic ring current. The diatropic contribution to the ring-current susceptibility is carried by the electrons in both the sigma (16.7 nAT) and the pi (11.3 nAT) orbitals. The induced ring current in the Al4 (4-) compounds, with four pi electrons, consists of about equally strong diatropic sigma and paratropic pi currents of about 14 and -17 nAT, respectively. The net current susceptibilities obtained for Al4Li-, Al4Li2, Al4Li3(-), and Al4Li4 at the CCSD level using a triple-zeta basis set augmented with polarization functions are 28.1, 28.1, -5.9, and -3.1 nAT, respectively. The corresponding diatropic (paratropic) contributions to the ring-current susceptibilities are 32.4 (0.0), 36.7 (0.0), 18.9 (-19.9), and 18.6 (-16.8) nAT, respectively. For the Al4(2-) and Al4(4-) species, the net currents circling each Li+ cation is estimated to 4.3 and 2.4 nAT, respectively.  相似文献   

13.
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned.  相似文献   

14.
The 12pi cation (3) and 14pi anion (4) derived from the phenalenyl radical (2) support diatropic ("aromatic") perimeter ring currents, but isoelectronic replacement of the central atom by either boron (5) or nitrogen (6) leads to paratropic ("antiaromatic") current; the ipsocentric approach to molecular magnetic response accounts for all four patterns in terms of competition between translationally and rotationally allowed virtual pi-pi* excitations.  相似文献   

15.
王祥云  魏雄辉  刘新起  刘伯里 《化学学报》2000,58(12):1522-1528
N,N'-二(2-巯乙基)-乙二胺(DTEN)作为二胺基二硫醇类配体的模型化合物,CH~3SH作为还原型谷胱甘肽(GSH)的模拟物,用从头算分子轨道理论研究了这两种配合物与CH~3S^-的反应产物。结果表明,CH~3S^-配位到TcO-DTEN的Tc原子上,而将其转化为不能穿越血脑屏障的[TcO-DTEN-SCH~3]^-离子。与此相反,CH~3S^-不能与TcN-DTEN中的Tc配位,后者仍保持可以穿越血脑屏障的中性分子状态。以此解释了^9^9^mTcO^3^+的二胺基二硫醇配合物比相应的^9^9^mTcN^2^+配合物在脑中有较高的滞留。还用从头算分子轨道理论研究了胺基配体与TcO^3^+及TcN^2^+配位时从胺基N上脱去质子的规律。  相似文献   

16.
A series of carboxyethylphosphonate hybrid materials has been prepared: Mn(II)(O3PCH2CH2COOH) *H2O (1), Mn(III)(OH)(O3PCH2CH2COOH)*H2O (2), Al3(III)(OH)3(O3PCH2CH2CO2)2 *3H2O (3) and Cr2(III)(OH)3(O3PCH2CH2CO2) *3H2O (4). Compounds 1 and 2 were synthesized from Mn(III)(CH3COO)3 *2H2O under hydrothermal, or refluxing treatments, respectively. The crystal structures of the manganese-bearing solids have been solved ab initio from laboratory X-ray powder diffraction data and refined by the Rietveld method. 1 crystallises in a orthorhombic cell and 2 in monoclinic symmetry. Both solids have inorganic 2D layered structures with the acid carboxylic groups pointing towards the interlayer space, and the layers linked only through hydrogen bonds. The inorganic layers of these compounds are formed by manganese atoms in distorted octahedral environments linked together by the phosphonate groups. The crystal structure of 3 has been solved ab initio from synchrotron X-ray powder diffraction data. This solid shows a pillared structure with the phosphonate and carboxylate groups cross-linking the inorganic layers. These layers contain chains of aluminium octahedra running parallel to each other. 4 is amorphous and the IR-UV-VIS spectra suggest a framework with Cr(III) cations in octahedral environments. Thermal, spectroscopic and magnetic data for manganese and chromium compounds as well as the structural details of these solids are discussed.  相似文献   

17.
The newly discovered atom-centered polygonal wheels B8(2-) and B9- are predicted to show ring currents characteristic of aromatic systems. Ipsocentric mapping of induced current density for both molecules attributes a pi diatropic current to the four electrons of the doubly degenerate pi HOMO and a sigma diatropic current to the four electrons of the doubly degenerate sigma HOMO, each orbital pair having an available transition to corresponding LUMO orbitals in which the angular node count increases by one. Thus, on the magnetic criterion, B8(2-) and B9- are each both pi- and sigma-aromatic as a consequence of the nodal properties of the frontier orbitals of the pi- and sigma-stacks.  相似文献   

18.
Ab initio current-density maps for the (4n + 2)-electron transition states of two thermally allowed [pi2s + pi2s + pi2s] trimerisations, of ethyne to benzene (1), and of ethene to cyclohexane (2), show that both support sigma diatropic ring currents, dominated by four-electron sigma --> sigma* virtual excitation of HOMO electrons.  相似文献   

19.
Maps of current density induced by a perpendicular external magnetic field are calculated at the ipsocentric CTOCD-DZ/6-31G**//B3PW91/6-31G** level for ring carbo-mers of [N]-annulenes (closed-shell singlet states of C(3N)H, N = 3 to 7, with q = -1, 0, +1, 0, -1, respectively, and also the triplet ground state for N = 4) and of [N]-cycloalkanes (C(3N)H(qN), N = 3, 4, 5). Strong four-electron diatropic ring currents indicate conventional pi aromaticity for all the singlet and triplet carbo-[N]annulenes studied, with the exception of C(12)H(4), where instead the strong two-electron paratropic ring current is the signature of pi antiaromaticity. The carbo-[N]cycloalkanes (also known as [N]pericyclynes) show only localized pi currents, consistent with non-aromaticity. There is no indication of a 'homo-aromatic' ring current attributable to the in-plane pi orbitals of the inserted C2 units in any of the maps. Consequences for the interpretation of ELF (electron localisation function) populations are discussed.  相似文献   

20.
Magnetically induced current densities and strengths of currents passing through selected bonds have been calculated for monophosphorous [28]hexaphyrin ((PO)[28]hp) and for bisphosphorous [30]hexaphyrin ((PO)(2)[30]hp) at the density functional theory level using our gauge-including magnetically induced current (GIMIC) approach. The current-density calculations yield quantitative information about electron-delocalization pathways and aromatic properties of singly M?bius twisted hexaphyrins. The calculations confirm that (PO)[28]hp sustains a strong diatropic ring current (susceptibility) of 15 nA T(-1) and can be considered aromatic, whereas (PO)(2)[30]hp is antiaromatic as it sustains a paratropic ring current of -10 nA T(-1). Numerical integration of the current density passing through selected bonds shows that the current is generally split at the pyrroles into an outer and an inner pathway. For the pyrrole with the NH moiety pointing outwards, the diatropic ring current of (PO)[28]hp takes the outer route across the NH unit, whereas for (PO)(2)[30]hp, the paratropic ring current passes through the inner C(β)=C(β) double bond. The main diatropic ring current of (PO)[28]hp generally prefers the outer routes at the pyrroles, whereas the paratropic ring current of (PO)(2)[30]hp prefers the inner ones. In some cases, the ring current is rather equally split along the two pathways at the pyrroles. The calculated ring-current pathways do not agree with those deduced from measured (1)H NMR chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号