首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The ligand substitution reaction of [Co(an)6]2+ (an = acetonitrile) with 1,1,3,3-tetramethylurea (TMU) in the noncoordinating solvent, nitromethane, was spectrophotometrically investigated by titration. The observed spectral changes were analyzed using a model with the four steps of ligand substitution. The component complexes involved in the substitution were found to be 6-coordinate [Co(an)6]2+ and [Co(an)5(tmu)]2+, 5-coordinate [Co(an)3(tmu)2]2+ and [Co(an)2(tmu)3]2+, and 4-coordinate [Co(tmu)4]2+. The logarithmic values of the stepwise equilibrium constant are 2.17 +/- 0.26, 1.06 +/- 0.15, 1.19 +/- 0.06, and -0.4 +/- 0.4 at 25 degrees C. The decrease in the coordination number of the Co(II) ion from 6 to 5 during the formation of [Co(an)3(tmu)2]2+ and from 5 to 4 during the formation of [Co(tmu)4]2+ is ascribed to the steric repulsion between the coordinating bulky TMU molecules.  相似文献   

2.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

3.
The reaction of [Co(2)(CO)(8)] with (CF(3))(3)BCO in hexane leads to the Lewis acid-base adduct [Co(2)(CO)(7)CO--B(CF(3))(3)] in high yield. When the reaction is performed in anhydrous HF solution [Co(CO)(5)][(CF(3))(3)BF] is isolated. The product contains the first example of a homoleptic metal pentacarbonyl cation with 18 valence electrons and a trigonal-bipyramidal structure. Treatment of [Co(2)(CO)(8)] or [Co(CO)(3)NO] with NO(+) salts of weakly coordinating anions results in mixed crystals containing the [Co(CO)(5)](+)/[Co(CO)(2)(NO)(2)](+) ions or pure novel [Co(CO)(2)(NO)(2)](+) salts, respectively. This is a promising route to other new metal carbonyl nitrosyl cations or even homoleptic metal nitrosyl cations. All compounds were characterized by vibrational spectroscopy and by single-crystal X-ray diffraction.  相似文献   

4.
对金基体上自组装ssDNA及dsDNA与钴邻菲啉配合物离子([Co(phen)3]2+/3+)相互作用进行电化学现场表面增强拉曼光谱(SERS)研究,获得相互作用位点及相互作用模式的信息.dsDNA与[Co(phen)3]2+/3+存在一定的嵌插作用,即配合物通过配体邻菲啉(phen)环以嵌插模式结合在碱基A-T及G-C富集区,同时与磷酸二酯键PO2结合,并伴随dsDNA螺旋构象由B型向A型转变;而[Co(phen)3]2+/3+则是以静电模式与ssDNA的磷酸二酯键PO2及脱氧核糖组成的骨架相互作用.  相似文献   

5.
The binding ability of a chiral L-cysteinato cobalt(III) complex, [Co(L-cys-N,S)(en)2]+ (l-H2cys = L-cysteine, en = ethylenediamine), toward a cadmium(II) center, together with the construction of S-bridged CoIIICdII structures that are controlled by anions and pH, is reported. The reaction of Lambda(L)-[Co(L-Hcys-N,S)(en)2](ClO4)2 having a pendent COOH group with CdCl2 in a 1:1 ratio in water, followed by the addition of NaCl, gave an S-bridged CoIIICdII dinuclear complex, Lambda(L)-[CdCl4{Co(L-Hcys-N,S)(en)2}] (1Cl), in which a cadmium(II) ion is weakly coordinated by a thiolato group from a Lambda(L)-[Co(L-Hcys-N,S)(en)2]2+ unit, besides four Cl- anions. The corresponding 1:1 reaction with CdBr2 and NaBr yielded an S-bridged CoIIICdIICoIII trinuclear complex composed of an S-bridged CoIIICdIICoIII trinuclear cation and a [CdBr4]2- anion, (Lambda(L))2-[CdBr3{Co(L-Hcys-N,S)(en)2}{Co(L-cys-N,S)(en)2} ][CdBr4] (2), while a CoIIICdII dinuclear complex analogous to 1Cl, Lambda(L)-[CdBr4{Co(L-Hcys-N,S)(en)2}] (1Br), was obtained by the addition of HBr instead of NaBr. In the CoIIICdIICoIII cation of 2, a CdII center is very weakly coordinated by two thiolato groups from Lambda(L)-[Co(L-Hcys-N,S)(en)2]2+ and Lambda(L)-[Co(L-cys-N,S)(en)2]+ units, besides three Br- anions, with the trinuclear structure being sustained by an intramolecular COOH...OOC hydrogen bond. On the other hand, no S-bridged structure was obtained by the corresponding 1:1 reaction with CdI2 and NaI, giving only a mononuclear CoIII species with a [CdI4]2- counteranion, Lambda(L)-[Co(L-Hcys-N,S)(en)2][CdI4] (3). When Lambda(L)-[Co(L-cys-N,S)(en)2]ClO4 having a deprotonated pendent COO- group was reacted with CdCl2 in a 1:1 ratio in water, followed by the addition of NaCl, a one-dimensional (CoIIICdII)n polymeric complex, (Lambda(L))n-[CdCl3{Co(L-cys-N,S)(en)2}]n (4Cl), in which Lambda(L)-[Co(L-cys-N,S)(en)2]+ units are alternately linked by [CdCl3]- moieties through thiolato and carboxylate groups, was constructed. An analogous (CoIIICdII)n polymeric structure having [Cd(NCS-N)3]- moieties, (Lambda(L))n-[Cd(NCS-N)3{Co(L-cys-N,S)(en)2}]n (4NCS), was also produced by the use of Cd(ClO4)2 and NaSCN.  相似文献   

6.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

7.
Bi J  Kong L  Huang Z  Liu J 《Inorganic chemistry》2008,47(11):4564-4569
Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.  相似文献   

8.
In the three-dimensional oxalate network structures [M(II)(bpy)3][M(I)-M(III)(ox)3] (ox= C2O4(2-); bpy = 2,2'-bipyridine) the negatively charged oxalate backbone provides perfect cavities for tris-bipyridyl complex cations. The size of the cavity can be adjusted by variation of the metal ions of the oxalate backbone. In [Co(bpy)3][NaCr(ox)3], the [Co(bpy)3]2 + complex is in its usual 4T1(t2g5e(g)2) high-spin ground state. Substituting Na+ by Li+ reduces the size of the cavity. The resulting chemical pressure destabilises the high-spin state of [Co(bpy)3]2+ to such an extent that the 2E(t2g6e(g)1) low-spin state becomes the actual ground state. As a result. [Co(bpy)3][LiCr(ox)3] becomes a spin-crossover system, as shown by temperature-dependent magnetic susceptibility measurements and single-crystal optical spectroscopy, as well as by an X-ray structure determination at 290 and 10 K.  相似文献   

9.
Inclusion compounds of a macrocyclic cavitand cucurbit[8]uril (CB[8]) with cobalt(III) and nickel(II) complexes of 1,3-diaminopropane (tn) and 1,3-diamino-2-propanol (tmOH) { trans-[Co(tn) 2Cl 2]@CB[8]}Cl.14H 2O ( 1), { trans-[Co(tmOH)(tmO)]@CB[8]}Cl 2.22H 2O ( 2), and { trans-[Ni(tmOH) 2]@CB[8]}Cl 2.22H 2O ( 3) were synthesized and characterized by X-ray single crystal analysis, IR spectroscopy, ESI-MS, and by solid-state stripping voltammetry. The encapsulation of trans-[Co(tn) 2Cl 2] (+) within the cavity of CB[8] stabilizes the complex toward ligand substitution reactions in aqueous solution. The electrochemical study demonstrates that CB[8] prefers the oxidized species in trans-[Co(tn) 2Cl 2] (+)/ trans-[Co(tn) 2Cl 2] (0) and trans-[Co(tmO)(tmOH) 2] (2+)/ trans-[Co(tmO)(tmOH) 2] (+) redox couples, but stabilizes the reduced form trans-[Ni(tmOH) 2] (2+) against the oxidized species. The reversibility of voltammogram shapes evidence that for the inclusion compounds 1- 3 electron transfer reactions proceed within the cavity of the host.  相似文献   

10.
Zheng YQ  Lin JL  Xu W  Xie HZ  Sun J  Wang XW 《Inorganic chemistry》2008,47(22):10280-10287
Seven new glutaric acid complexes, Co(H 2O) 5L 1, Na 2[CoL 2] 2, Na 2[L(H 2L) 4/2] 3, {[Co 3(H 2O) 6L 2](HL) 2}.4H 2O 4, {[Co 3(H 2O) 6L 2](HL) 2}.10H 2O 5, {[Co 3(H 2O) 6L 2]L 2/2}.4H 2O 6, and Na 2{[Co 3(H 2O) 2]L 8/2].6H 2O 7 were obtained and characterized by single-crystal X-ray diffraction methods along with elemental analyses, IR spectroscopic and magnetic measurements (for 1 and 2). The [Co(H 2O) 5L] complex molecules in 1 are assembled into a three-dimensional supramolecular architecture based on intermolecular hydrogen bonds. Compound 2 consists of the Na (+) cations and the necklace-like glutarato doubly bridged [ C o L 4 / 2 ] 2 - infinity 1 anionic chains, and 3 is composed of the Na (+) cations and the anionic hydrogen bonded ladder-like [ L ( H 2 L ) 4 / 2 ] 2 - infinity 1 anionic chains. The trinuclear {[Co 3(H 2O) 6L 2](HL) 2} complex molecules with edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 4 and 5 are hydrogen bonded into two-dimensional (2D) networks. The edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 6 are bridged by glutarato ligands to generate one-dimensional (1D) chains, which are then assembled via interchain hydrogen bonds into 2D supramolecular networks. The corner-shared linear [Co 3O 16] trioctahedra in 7 are quaternate bridged by glutarato ligands to form 1D band-like anionic {[Co 3(H 2O) 2]L 8/2} (2+) chains, which are assembled via interchain hydrogen bonds into 2D layers, and between them are sandwiched the Na (+) cations. The magnetic behaviors of 1 and 2 obey the Curie-Weiss law with chi m = C/( T - Theta) with the Curie constant C = 3.012(8) cm (3) x mol (-1) x K and the Weiss constant Theta = -9.4(7) K for 1, as well as C = 2.40(1) cm (3) x mol (-1) x K and Theta = -2.10(5) K for 2, indicating weak antiferromagnetic interactions between the Co(II) ions.  相似文献   

11.
Treatment of P(X)(X')Cl with KC8 gave the crystalline diphosphine [P(X)X']2 (1) which dissociated reversibly into the phosphinyl radical *P(X)X' (2), a plausible intermediate in the reaction of with [Cr(CO)6], [Co(NO)(CO)3] or P4, yielding [Cr[P(X)X']2(CO)3] (3), [Co[P(X)X'](CO)3] (4), or 1,4-P4[P(X)X']2 (5); the P(X)X' substituent is pyramidal at P in but planar in [X = N(SiMe3)2, X'= NPri2].  相似文献   

12.
Three novel cyanide-bridged heterobimetallic coordination polymers have been synthesized by hydrothermal routes, in superheated water solutions, by using K3[Co(CN)6], NiCl2.6H2O, and alpha-diimine ligands: [Ni(CN)4Co(phen)] (1; phen = 1,10-phenanthroline), [Ni(CN)4Co(2,2'-bipy)] (2; 2,2'-bipy = 2,2'-bipyiridine), and [Ni(CN)4Co(2,2'-bipy)2] (3). The isostructural compounds 1 and 2 contain a two-dimensional network with Co(II) centers octahedrally coordinated by one chelating 2,2'-bipy ligand and four cyanide groups of four distinct [Ni(CN)4]2-, through crystallographically equivalent, bridging units. Compound 3 contains one-dimensional zigzag chains in which the Co(II) ion is coordinated by two chelating 2,2'-bipy ligands and two cyanides from two different [Ni(CN)4]2- units cis to each other. These compounds have been fully characterized by single-crystal or unconventional powder X-ray diffraction analyses and variable-temperature magnetic measurements.  相似文献   

13.
1 INTRODUCTION Supramolecular compounds assembled by coordination covalent bonding or hydrogen bonding are of considerable interest due to their potential applications in developing new materials with magnetic, optical and catalytic properties[1]. One of the synthesis methods used to construct the functional compounds is that octahedral metal ion connects to polydentate ligand such as 4, 4?bipyridine, pyrazine and so on to form multi-dimensional supramolecular polymer[2]. Hmt (hexamethyl…  相似文献   

14.
Polymeric technetium tetrachloride reacts with monodentate donor ligands such as THF, acetonitrile, DMSO, thioxane (1-oxa-4-thiacyclohexane), PMe2Ph, PPh3, OPPh3, or OH2 via cleavage of the polymeric network and the formation of [TcCl4(L)2] complexes. The configuration of the products is dependent on the donor atoms such that trans coordination is established with "soft" donor atoms such as sulfur or phosphorus, while cis-[TcCl4(L)2] complexes are formed with the "harder" donors oxygen or nitrogen. The ambivalent thioxane binds to technetium via the sulfur atom. The trans products are air stable and resistant to hydrolysis. The cis complexes, however, undergo stepwise hydrolysis, during which complexes of the composition [Cl3(L)2TcOTc(L)2Cl3] (L = CH3CN, DMSO, or OH2) are formed. They are the first representatives of a new class of technetium(IV) complexes with a bridging oxo ligand. The Tc-O bond lengths in these bridges are between 1.803(1) and 1.823(2) A.  相似文献   

15.
The kinetics of formation, acid-catalysed aquation, ligand isomerisation (CoIIIOSO2+→CoIIISO3+), intramolecular electron-transfer, and base-catalysed hydrolysis and isomerisation of O-bonded sulphito complexes, cis-[Co(en)2(B)(OSO2–O)]+[B=benzimidazole (bzimH), N-methylimidazole (N-meim)] and the anation of cis-[Co(en)2(B)OH)]2+ [B=bzimH, N-meim and imH (imidazole)] by oxSO2−3 are reported. Steric acceleration is observed in the formation and acid-catalysed aquation of the O-sulphito complexes. The ligand isomerisation leads to loss of the monodentate amine with the formation of trans-[Co(en)2(SO3–S)2]− (in an excess of sulphite). Steric acceleration is more pronounced in the isomerisation and base hydrolysis than in the redox process. The results indicate cis labilisation of the coordinated O-sulphite. The [(tetraethylenepentamine)Co(OSO2–O)]+ cation undergoes base hydrolysis 103 times faster than the corresponding (en)2(B) complexes; base-catalysed ligand isomerisation for the former is not observed unlike in the latter. The anation of cis-[Co(en)2(B)OH]2+ (B=imH, bzimH, N-meim) by SO2−3 in a mild alkali pH range (pH=7.9–9.6) and in an excess of SO2−3, yields exclusively trans-[Co(en)2(SO3–S)2]− with no evidence for the formation of the cis-[Co(en)2(B)(SO3–S)]+ or its O-sulphito analogue. The intramolecularly generated amido conjugate base of the sulphite ion-pair, {cis-[Co(en)2(B)OH]2+,SO32−}.41cm{cis-[Co(en)(en-H) (B)- OH2]2+,SO32−}, is believed to generate a five-coordinate intermediate (TBP) that captures the S-end of SO2−3 selectively from a site trans-to the amine B so that the amine is labilised by the trans effect of the sulphite. The NH-deprotonated coordinated imidazolate or benzimidazolate species, cis-[Co(en)2(bzm/im)OH]+, do not undergo anation by SO2−3. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Kou HZ  Sato O 《Inorganic chemistry》2007,46(23):9513-9515
The reaction of Mn2+ with [Cr(ox)3]3- in the presence of the spin-crossover [Co(terpy)2]2+ cation gives rise to a 1D [Co(terpy)2][Mn(H2O)ClCr(ox)3].H2O.0.5MeOH (1) or a 2D [Co(terpy)2][Mn(H2O)Cr(ox)3]2.5H2O.0.5MeOH (2). The trimetallic complexes display dominant ferromagnetic behavior, and spin-crossover of [Co(terpy)2]2+ is suppressed by the chemical pressure of the polymeric oxalate-bridged network.  相似文献   

17.
The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed. Collision-induced dissociation (CID) products of the [Co(Cys)2]2+, [Co(Cys)2 - H]+ and [Co(Cys) - H]+ complexes were studied as a function of the collision energy, and mechanisms for the dissociation reactions are proposed. These were supported by the results of deuterium labelling experiments and by density functional theory calculations. Since [Co(Cys) - H]+ was one of the main product ions obtained upon the CID of [Co(Cys)2]2+ and of [Co(Cys)2 - H]+ under low-energy conditions, the fragmentation pathways of [Co(Cys) - H]+ and the resulting product ion structures were studied in detail. The resulting product ion structures confirmed the high affinity of cobalt(II) for the sulfur atom of cysteine.  相似文献   

18.
Reaction of [Et4N]2[Mo2S2(μ-S)2(edt)2] with CoCl2(6H2O and Phen in MeCN followed by recrystallization in DMSO/Et2O gave rise to dark-red block crystals of {[Co(Phen)3]- [Mo2S2(μ-S)2(edt)2]}2·(DMSO)2·(Et2O) 1 (C88H86Co2Mo4N12O3S18). 1 crystallizes in the monoclinic system, space group P21/c with a = 24.631(4), b = 16.117(3), c = 24.791(4) (A), β = 92.835°, V = 9829.3(3) (A)3, Z = 4, Mr = 2438.57, Dc = 1.648 g/cm3, F(000) = 4928, μ = 12.61 cm-1, R = 0.0936 and wR = 0.1682 for 12998 observed reflections with I > 2.0σ(I). In the structure of 1, the Co atom of the [Co(Phen)3]2+ dication is octahedrally coordinated by three Phen ligands. The Mo atom of the [Mo2S2(μ-S)2(edt)2]2- dianion is coordinated by two μ-S, one terminal S and two S atoms from edt, forming a distorted square pyramidal geometry. The mean Co-N and Mo…Mo bond distances are 2.139 and 2.872 (A), respectively.  相似文献   

19.
The cobalt(III) complexes, [(NH3)5CoBr]2+ and [(NH3)5CoI]2+ are reduced by Ti(II) solutions containing Ti(IV), generating nearly linear (zero-order) profiles that become curved only during the last few percent of reaction. Other Co(III)-Ti(II) systems exhibit the usual exponential traces with rates proportional to [Co(III)]. Observed kinetics of the biphasic catalyzed Ti(II)-Co(III)Br and Ti(II)-Co(III)I reactions support the reaction sequence: [Ti(II)(H20)n]2+ + [Ti(IV)F5]- (k1)<==>(k -1) [Ti(II)(H2O)(n-1)]2+ + [(H2O)Ti(IV)F5]-, [Ti(II)(H2O)(n-1)]2+ + Co(III) (k2)--> Ti(III) + Co(II) with rates determined mainly by the slow Ti(IV)-Ti(II) ligand exchange (k1 = 9 x 10(-3) M(-1) s(-1) at 22 degrees C). Computer simulations of the catalyzed Ti(II)-Co(III) reaction in perchlorate-triflate media yield relative rates for reduction by the proposed active [Ti(II)(H2O)(n-1)]2+ intermediate; k(Br)/k(I) = 8.  相似文献   

20.
The crystal structures of [Co 2L(Cl)](ClO 4) 3 ( 1), [Co 2L(Br)](ClO 4) 3 ( 2), [Co 2L(OH)(OH 2)]I 3 ( 3), and [Co 2L (1)(Cl)](ClO 4) 3 ( 4), the density functional theory calculations, as well as the binding constants of [Co 2L] (4+) toward Cl (-) and Br (-) and of [Co 2L (1)] (4+) toward Cl (-), are reported in this paper (L = N[(CH 2) 2NHCH 2(C 6H 4- p)CH 2NH(CH 2) 2] 3N, L (1) = N[(CH 2) 2NHCH 2(C 6H 4- m)CH 2NH(CH 2) 2] 3N). The rigid dicobalt(II) cryptate [Co 2L] (4+) shows the recognition of Cl (-) and Br (-) but not of F (-) and I (-), because of the size matching to its rigid cavity. We also found that the relative rigid tripodal skeleton of L than that of L (1) results in the higher affinity of [Co 2L] (4+) toward Cl (-). Magnetic susceptibility measurements of 1 and 2 indicate that the two Co(II) atoms in the cryptates are antiferromagnetically coupled through the Cl (-)/Br (-) bridge, with g = 2.19, J = -13.7 cm (-1) for 1, and g = 2.22, J = -17.1 cm (-1) for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号