首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Isodistant points in competitive network facility location   总被引:1,自引:0,他引:1  
An isodistant point is any point on a network which is located at a predetermined distance from some node. For some competitive facility location problems on a network, it is verified that optimal (or near-optimal) locations are found in the set of nodes and isodistant points (or points in the vicinity of isodistant points). While the nodes are known, the isodistant points have to be determined for each problem. Surprisingly, no algorithm has been proposed to generate the isodistant points on a network. In this paper, we present a variety of such problems and propose an algorithm to find all isodistant points for given threshold distances associated with the nodes. The number of isodistant points is upper bounded by nm, where n and m are the number of nodes and the number of edges, respectively. Computational experiments are presented which show that isodistant points can be generated in short run time and the number of such points is much smaller than nm. Thus, for networks of moderate size, it is possible to find optimal (or near-optimal) solutions through the Integer Linear Programming formulations corresponding to the discrete version of such problems, in which a finite set of points are taken as location candidates.  相似文献   

2.
A drawback to using local search algorithms to address NP-hard discrete optimization problems is that many neighborhood functions have an exponential number of local optima that are not global optima (termed L-locals). A neighborhood function η is said to be stable if the number of L-locals is polynomial. A stable neighborhood function ensures that the number of L-locals does not grow too large as the instance size increases and results in improved performance for many local search algorithms. This paper studies the complexity of stable neighborhood functions for NP-hard discrete optimization problems by introducing neighborhood transformations. Neighborhood transformations between discrete optimization problems consist of a transformation of problem instances and a corresponding transformation of solutions that preserves the ordering imposed by the objective function values. In this paper, MAX Weighted Boolean SAT (MWBS), MAX Clause Weighted SAT (MCWS), and Zero-One Integer Programming (ZOIP) are shown to be NPO-complete with respect to neighborhood transformations. Therefore, if MWBS, MCWS, or ZOIP has a stable neighborhood function, then every problem in NPO has a stable neighborhood function. These results demonstrate the difficulty of finding effective neighborhood functions for NP-hard discrete optimization problems.This research is supported in part by the Air Force Office of Scientific Research (F49620-01-1-0007, FA9550-04-1-0110).  相似文献   

3.
Genetic algorithms are stochastic search algorithms that have been applied to optimization problems. In this paper we analyze the run-time complexity of a genetic algorithm when we are interested in one of a set of distinguished solutions. One such case occurs when multiple optima exist. We define the worst case scenario and derive a probabilistic worst case bound on the number of iterations required to find one of these multiple solutions of interest.  相似文献   

4.
A Post-Optimality Analysis Algorithm for Multi-Objective Optimization   总被引:2,自引:1,他引:1  
Algorithms for multi-objective optimization problems are designed to generate a single Pareto optimum (non-dominated solution) or a set of Pareto optima that reflect the preferences of the decision-maker. If a set of Pareto optima are generated, then it is useful for the decision-maker to be able to obtain a small set of preferred Pareto optima using an unbiased technique of filtering solutions. This suggests the need for an efficient selection procedure to identify such a preferred subset that reflects the preferences of the decision-maker with respect to the objective functions. Selection procedures typically use a value function or a scalarizing function to express preferences among objective functions. This paper introduces and analyzes the Greedy Reduction (GR) algorithm for obtaining subsets of Pareto optima from large solution sets in multi-objective optimization. Selection of these subsets is based on maximizing a scalarizing function of the vector of percentile ordinal rankings of the Pareto optima within the larger set. A proof of optimality of the GR algorithm that relies on the non-dominated property of the vector of percentile ordinal rankings is provided. The GR algorithm executes in linear time in the worst case. The GR algorithm is illustrated on sets of Pareto optima obtained from five interactive methods for multi-objective optimization and three non-linear multi-objective test problems. These results suggest that the GR algorithm provides an efficient way to identify subsets of preferred Pareto optima from larger sets.  相似文献   

5.
This paper presents the surrogate model based algorithm SO-I for solving purely integer optimization problems that have computationally expensive black-box objective functions and that may have computationally expensive constraints. The algorithm was developed for solving global optimization problems, meaning that the relaxed optimization problems have many local optima. However, the method is also shown to perform well on many local optimization problems, and problems with linear objective functions. The performance of SO-I, a genetic algorithm, Nonsmooth Optimization by Mesh Adaptive Direct Search (NOMAD), SO-MI (Müller et al. in Comput Oper Res 40(5):1383–1400, 2013), variable neighborhood search, and a version of SO-I that only uses a local search has been compared on 17 test problems from the literature, and on eight realizations of two application problems. One application problem relates to hydropower generation, and the other one to throughput maximization. The numerical results show that SO-I finds good solutions most efficiently. Moreover, as opposed to SO-MI, SO-I is able to find feasible points by employing a first optimization phase that aims at minimizing a constraint violation function. A feasible user-supplied point is not necessary.  相似文献   

6.
In this paper, we consider the box constrained nonlinear integer programming problem. We present an auxiliary function, which has the same discrete global minimizers as the problem. The minimization of the function using a discrete local search method can escape successfully from previously converged discrete local minimizers by taking increasing values of a parameter. We propose an algorithm to find a global minimizer of the box constrained nonlinear integer programming problem. The algorithm minimizes the auxiliary function from random initial points. We prove that the algorithm can converge asymptotically with probability one. Numerical experiments on a set of test problems show that the algorithm is efficient and robust.  相似文献   

7.
This paper presents a new algorithm for identifying all supported non-dominated vectors (or outcomes) in the objective space, as well as the corresponding efficient solutions in the decision space, for multi-objective integer network flow problems. Identifying the set of supported non-dominated vectors is of the utmost importance for obtaining a first approximation of the whole set of non-dominated vectors. This approximation is crucial, for example, in two-phase methods that first compute the supported non-dominated vectors and then the unsupported non-dominated ones. Our approach is based on a negative-cycle algorithm used in single objective minimum cost flow problems, applied to a sequence of parametric problems. The proposed approach uses the connectedness property of the set of supported non-dominated vectors/efficient solutions to find all integer solutions in maximal non-dominated/efficient facets.  相似文献   

8.
Two of the main approaches in multiple criteria optimization are optimization over the efficient set and utility function program. These are nonconvex optimization problems in which local optima can be different from global optima. Existing global optimization methods for solving such problems can only work well for problems of moderate dimensions. In this article, we propose some ways to reduce the number of criteria and the dimension of a linear multiple criteria optimization problem. By the concept of so-called representative and extreme criteria, which is motivated by the concept of redundant (or nonessential) objective functions of Gal and Leberling, we can reduce the number of criteria without altering the set of efficient solutions. Furthermore, by using linear independent criteria, the linear multiple criteria optimization problem under consideration can be transformed into an equivalent linear multiple criteria optimization problem in the space of linear independent criteria. This equivalence is understood in a sense that efficient solutions of each problem can be derived from efficient solutions of the other by some affine transformation. As a result, such criteria and dimension reduction techniques could help to increase the efficiency of existing algorithms and to develop new methods for handling global optimization problems arisen from multiple objective optimization.  相似文献   

9.
In this paper we propose a new integer programming formulation for the multilevel facility location problem and a novel 3-approximation algorithm based on LP-rounding. The linear program that we use has a polynomial number of variables and constraints, thus being more efficient than the one commonly used in the approximation algorithms for these types of problems.  相似文献   

10.
Generalized hill climbing (GHC) algorithms provide a framework for modeling local search algorithms for addressing intractable discrete optimization problems. Measures for assessing the finite-time performance of GHC algorithms have been developed using this framework, including the expected number of iterations to visit a predetermined objective function value level. This paper analyzes how the expected number of iterations to visit a predetermined objective function value level can be estimated for cyclical simulated annealing. Cyclical simulated annealing uses a cooling schedule that cycles through a set of temperature values. Computational results with traveling salesman problem instances taken from TSPLIB show how the expected number of iterations to visit solutions with predetermined objective function levels can be estimated for cyclical simulated annealing.AMS 2000 Subject Classification 90-08 Computational Methods: Local Search, 90C59 Heuristics: Simulated Annealing  相似文献   

11.
Global optimization and simulated annealing   总被引:19,自引:0,他引:19  
In this paper we are concerned with global optimization, which can be defined as the problem of finding points on a bounded subset of n in which some real valued functionf assumes its optimal (maximal or minimal) value.We present a stochastic approach which is based on the simulated annealing algorithm. The approach closely follows the formulation of the simulated annealing algorithm as originally given for discrete optimization problems. The mathematical formulation is extended to continuous optimization problems, and we prove asymptotic convergence to the set of global optima. Furthermore, we discuss an implementation of the algorithm and compare its performance with other well-known algorithms. The performance evaluation is carried out for a standard set of test functions from the literature.  相似文献   

12.
This paper investigates the use of multi-objective methods to guide the search when solving single-objective optimisation problems with genetic algorithms. Using the job shop scheduling and travelling salesman problems as examples, experiments demonstrate that the use of helper-objectives (additional objectives guiding the search) significantly improves the average performance of a standard GA. The helper-objectives guide the search towards solutions containing good building blocks and help the algorithm escape local optima. The experiments reveal that the approach works if the number of simultaneously used helper-objectives is low. However, a high number of helper-objectives can be used in the same run by changing the helper-objectives dynamically. The experiments reveal that for the majority of problem instances studied, the proposed approach significantly outperforms a traditional GA.The experiments also demonstrate that controlling the proportion of non-dominated solutions in the population is very important when using helper-objectives, since the presence of too many non-dominated solutions removes the selection pressure in the algorithm.  相似文献   

13.

Non-convex discrete-time optimal control problems in, e.g., water or power systems, typically involve a large number of variables related through nonlinear equality constraints. The ideal goal is to find a globally optimal solution, and numerical experience indicates that algorithms aiming for Karush–Kuhn–Tucker points often find solutions that are indistinguishable from global optima. In our paper, we provide a theoretical underpinning for this phenomenon, showing that on a broad class of problems the objective can be shown to be an invariant convex function (invex function) of the control decision variables when state variables are eliminated using implicit function theory. In this way, optimality guarantees can be obtained, the exact nature of which depends on the position of the solution within the feasible set. In a numerical example, we show how high-quality solutions are obtained with local search for a river control problem where invexity holds.

  相似文献   

14.
In this paper, a class of continuous Estimation of Distribution Algorithms (EDAs) based on Gaussian models is analyzed to investigate their potential for solving dynamic optimization problems where the global optima may change dramatically during time. Experimental results on a number of dynamic problems show that the proposed strategy for dynamic optimization can significantly improve the performance of the original EDAs and the optimal solutions can be consistently located.  相似文献   

15.
An algorithm for the mixed-integer nonlinear bilevel programming problem   总被引:5,自引:0,他引:5  
The bilevel programming problem (BLPP) is a two-person nonzero sum game in which play is sequential and cooperation is not permitted. In this paper, we examine a class of BLPPs where the leader controls a set of continuous and discrete variables and tries to minimize a convex nonlinear objective function. The follower's objective function is a convex quadratic in a continuous decision space. All constraints are assumed to be linear. A branch and bound algorithm is developed that finds global optima. The main purpose of this paper is to identify efficient branching rules, and to determine the computational burden of the numeric procedures. Extensive test results are reported. We close by showing that it is not readily possible to extend the algorithm to the more general case involving integer follower variables.This work was supported by a grant from the Advanced Research Program of the Texas Higher Education Coordinating Board.  相似文献   

16.
We extend the Mizuno-Todd-Ye predictor-corrector algorithm for solving monotone linear complementarity problems. We prove that the extended algorithm is globally Q-linearly convergent and solves problems with integer data of bitlengthL in at most iterations. We also prove that the duality gap converges to zero Q-superlinearly for problems having strictly complementary solutions. Our results generalize the results obtained by Ye, Tapia, and Zhang for linear programming.  相似文献   

17.
整数规划的一类填充函数算法   总被引:9,自引:0,他引:9  
填充函数算法是求解连续总体优化问题的一类有效算法。本文改造[1]的填充函数算法使之适于直接求解整数规划问题。首先,给出整数规划问题的离散局部极小解的定义,并设计找离散局部极小解的领域搜索算法。其次,构造整数规划问题的填充函数算法。该方法通过寻找填充函数的离散局部极小解以期找到整数规划问题的比当前离散局部极小解好的解。本文的算法是直接法,数值试验表明算法是有效的。  相似文献   

18.
Typical formulations of thep-median problem on a network assume discrete nodal demands. However, for many problems, demands are better represented by continuous functions along the links, in addition to nodal demands. For such problems, optimal server locations need not occur at nodes, so that algorithms of the kind developed for the discrete demand case can not be used. In this paper we show how the 2-median of a tree network with continuous link demands can be found using an algorithm based on sequential location and allocation. We show that the algorithm will converge to a local minimum and then present a procedure for finding the global minimum solution.  相似文献   

19.
This paper considers the discrete two-hub location problem. We need to choose two hubs from a set of nodes. The remaining nodes are to be connected to one of the two hubs which act as switching points for internodal flows. A configuration which minimizes the total flow cost needs to be found. We show that the problem can be solved in polynomial time when the hub locations are fixed. Since there are at most ways to choose the hub locations, the two-hub location problem can be solved in polynomial time. We transform the quadratic 0–1 integer program of the single allocation problem in the fixed two-hub system into a linear program and show that all extreme points of the polytope defined by the LP are integral. Also, the problem can be transformed into a minimum cut problem which can be solved efficiently by any polynomial time algorithm.  相似文献   

20.
The set packing problem and the corresponding integer linear programming model are considered. Using the regular partitioning method and available estimates of the average number of feasible solutions of this problem, upper bounds on the average number of iterations for the first Gomory method, the branch-and-bound method (the Land and Doig scheme), and the L-class enumeration algorithm are obtained. The possibilities of using the proposed approach for other integer programs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号