首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenethyl phenyl ether (PPE; PhCH 2CH 2OPh) is the simplest model for the most common beta-O-4 linkage in lignin. Previously, we developed a computational scheme to calculate the alpha/beta product selectivity in the pyrolysis of PPE by systematically exploiting error cancellation in the computation of relative rate constants. The alpha/beta selectivity is defined as the selectivity between the competitive hydrogen abstraction reaction paths on the alpha- and beta-carbons of PPE. We use density functional theory and employ transition state theory where we include diagonal anharmonic correction in the vibrational partition functions for low frequency modes for which a semiclassical expression is used. In this work we investigate the effect of oxygen substituents (hydroxy, methoxy) in the para position on the phenethyl ring of PPE on the alpha/beta selectivities. The total alpha/beta selectivity increases when substituents are introduced and is larger for the methoxy than the hydroxy substituent. The strongest effect of the substituents is observed for the alpha-pathway of the hydrogen abstraction by the phenoxyl chain carrying radical for which the rate increases. For the beta pathway and the abstraction by the R-benzyl radical (R = OH,OCH 3) the rate decreases with the introduction of the substituents. These findings are compared with results from recent experimental studies.  相似文献   

2.
Pyrolysis of phenethyl phenyl ether confined in mesoporous silicas by covalent grafting results in significantly increased product selectivity compared with fluid phases.  相似文献   

3.
The pyrolysis of 2-phenethyl phenyl ether (PPE, C(6)H(5)C(2)H(4)OC(6)H(5)) in a hyperthermal nozzle (300-1350 °C) was studied to determine the importance of concerted and homolytic unimolecular decomposition pathways. Short residence times (<100 μs) and low concentrations in this reactor allowed the direct detection of the initial reaction products from thermolysis. Reactants, radicals, and most products were detected with photoionization (10.5 eV) time-of-flight mass spectrometry (PIMS). Detection of phenoxy radical, cyclopentadienyl radical, benzyl radical, and benzene suggest the formation of product by the homolytic scission of the C(6)H(5)C(2)H(4)-OC(6)H(5) and C(6)H(5)CH(2)-CH(2)OC(6)H(5) bonds. The detection of phenol and styrene suggests decomposition by a concerted reaction mechanism. Phenyl ethyl ether (PEE, C(6)H(5)OC(2)H(5)) pyrolysis was also studied using PIMS and using cryogenic matrix-isolated infrared spectroscopy (matrix-IR). The results for PEE also indicate the presence of both homolytic bond breaking and concerted decomposition reactions. Quantum mechanical calculations using CBS-QB3 were conducted, and the results were used with transition state theory (TST) to estimate the rate constants for the different reaction pathways. The results are consistent with the experimental measurements and suggest that the concerted retro-ene and Maccoll reactions are dominant at low temperatures (below 1000 °C), whereas the contribution of the C(6)H(5)C(2)H(4)-OC(6)H(5) homolytic bond scission reaction increases at higher temperatures (above 1000 °C).  相似文献   

4.
A value of the enthalpy of formation of the phenoxy radical in the gas phase, ΔH°,298K (?O·, g) = 11.4 ± 2.0 kcal/mol, has been obtained from the kinetic study of the unimolecular decompositions of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether
  • 1 Trivial names for ethoxy benzene, 2-propenoxy (allyloxy) benzene, and α-methoxytoluene, respectively
  • at very low pressures. Bond fission, producing phenoxy or benzyl radicals, respectively, is the only mode of decomposition in each case. The present value leads to a bond dissociation energy BDE(?O—H) = 86.5 ± 2 kcal/mol,
  • 2 1 kcal = 4.18674 kJ (absolute)
  • in good agreement with recent estimates made on the basis of competitive oxidation steps in the liquid phase. A comparison with bond dissociation energies of aliphatic alcohols, BDE(RO—H) = 104 kcal/mol, reveals that the stabilization energy of the phenoxy radical (17.5 kcal/mol) is considerably greater than the one observed for the isoelectronic benzyl radical (13.2 kcal/mol). Decomposition of phenoxy radicals into cyclopentadienyl radicals and CO has been observed at temperatures above 1000°K, and a mechanism for this reaction is proposed.  相似文献   

    5.
    Li  Na  Zhang  Xingke  Yu  Junrong  Wang  Yan  Zhu  Jing  Hu  Zuming 《Journal of Thermal Analysis and Calorimetry》2020,140(1):283-293
    Journal of Thermal Analysis and Calorimetry - Copolymerized poly(m-phenylene isophthalamide) (co-PMIA) was synthesized by solution polycondensation using m-phenylenediamine and isophthaloyl...  相似文献   

    6.
    The use of the pulsed laser powered homogeneous pyrolysis technique for measuring unimolecular decomposition rate constants under unambiguously homogeneous conditions is investigated by numerical simulation of the experiment. The coupled partial differential equations which govern the gas dynamics and chemical kinetics are solved numerically and the results analyzed. Conditions under which rate constants can be extracted from the experimental data using a simplified analysis are determined. The effects of five sources of error in the simplified analysis are computed. A correlation is presented which may be used to correct for overestimation of the rate constant which is inherent in the simple analysis. Conditions under which the other four sources of error become negligible are presented. Overall, it is expected that this technique will be capable of routinely measuring rate constants within a factor of 2, and will do much better when a high power laser with a uniform beam profile is used and/or a well characterized thermal monitor molecule is available which decomposes with kinetic parameters close to that of the reactant being investigated. © 1994 John Wiley & Sons, Inc.  相似文献   

    7.
    研究了Ni基催化剂上木质素模型化合物苯基苯乙醚中C-O-C键加氢裂解性能.结果表明,Ni/C催化剂显示出优异的加氢裂解能力,苯基苯乙醚的转化率达到99%以上.Ni/C催化剂的还原方法对裂解选择性有重要影响;氢气还原制备的Ni/C-H催化剂上,C-O-C键裂解选择性为85%.Ru/C和Pd/C催化剂上裂解选择性分别为40%和69%.采用碳热还原方法制备的Ni/C-C催化剂,可以实现高选择性加氢和裂解,C-O-C键裂解选择性达到99%以上,其中芳烃化合物收率为44%.这可能与镍组分和载体碳之间的相互作用有关.  相似文献   

    8.
    Since the 1950s, cellulose pyrolysis has been the subject of intense study, with kinetic analyses forming a major part of these studies. They represent useful tools for a better understanding of the physicochemical process and for the proper design of industrial pyrolysis units. Until recently, the methods most frequently used in these analyses were based on model-fitting, i.e. the fitting of the experimental data to a number of mathematical models. Nowadays, other methods, so-called “model-free” methods, are considered to be more suited. These are based on the principle that, at constant conversion, the reaction rate depends only on temperature. In its first part, this short review presents the particularities and drawbacks of the traditional model-fitting models. Subsequently, several main contributions in this field are listed and discussed. Finally, the more suited “model-free” (isoconversional) methods are explained and several main studies presented, as well as a comparison of this method with the model-fitting ones.  相似文献   

    9.
    Light-induced cationic ring-opening reactions of 2,3-epoxypropyl phenyl ether (phenyl glycidyl ether, PGE) in acetone, methanol and bulk were studied. Cations are produced by electron transfer from excited sensitizers (anthracene, An; 9,10-phenanthrenequinone, PQ; benzophenone, BP) or from photolytically cleaved sensitizer (benzoin isoproyl ether, BIPE) to diphenyliodonium hexafluorophosphate. With excess of acetone and methanol, addition reactions take place resulting in 2,2-dimethyl-4-phenoxymethyl-1,3-dioxolane and 1-methoxy-3-phenoxy propan-2-ol as main products. The efficiency of the sensitizers taken from the quantum yields of PGE conversion, follows the order An ? BIPE > PQ > BP in acetone and An ~ BP > BIPE ? PQ in methanol. Unlike bulk polymerization, in these addition reactions no steady-state concentration of cations exists and the reaction accelerates with time. When alcohol is added in only small proportions, the initial addition reactions goes over into a linear oligomerization. The relatively higher basicity of methanol over PGE influences the nature of the active center, and the course of reaction depends on methanol concentration. Kinetic expressions, which account for all possible types of active centers, have been derived to express the rate of PGE reactions in methanol.  相似文献   

    10.
    The previously reported extensive mechanism for the pyrolysis of propane and n-butane around 800 K is reexamined in the light of a recent reevaluation of the rate constant data base, and the sensitivity of model simulations to variations in the rate parameters is studied. The pyrolysis rates of butane and the product distribution of propane remain in good agreement with the available experiments, while the rate of propane and the product distribution of butane now show significant differences. The linear sensitivity analysis of the reaction matrix demonstrates an intimate coupling between initiation, hydrogen abstraction, radical decomposition, and recombination reactions as primarily responsible for the overall behavior of the mechanism. The role of unsaturated radicals in the self-inhibition of the pyrolysis process is quantitatively established. The study of the sensitivity coefficients for butane product formation has permitted pinpointing those specific reaction steps in the mechanism which are most likely responsible for the remaining discrepancies between model and experiment. This particular example demonstrates the usefulness of sensitivity calculations for the isolation of reactions for which improvements in rate parameter values are needed.  相似文献   

    11.
    An  Hang  Li  Yue  Hua  Fang  Li  Tianyang  Cheng  Yan  Cheng  Yi 《Journal of Thermal Analysis and Calorimetry》2020,142(4):1469-1475
    Journal of Thermal Analysis and Calorimetry - Pyrolysis is an important process for converting unconventional fuels, such as heavy oil, residues and oil sand, to high-value-added light products....  相似文献   

    12.
    13.
    There has been expanding interest in exploring porous metal oxides as a confining environment for organic molecules resulting in altered chemical and physical properties including chemical transformations. In this paper, we examine the pyrolysis behavior of phenethyl phenyl ether (PPE) confined in mesoporous silica by covalent tethers to the pore walls as a function of tether density and the presence of cotethered surface spacer molecules of varying structure (biphenyl, naphthyl, octyl, and hexadecyl). The PPE pyrolysis product selectivity, which is determined by two competitive free-radical pathways cycling through the two aliphatic radical intermediates (PhCH·CH(2)OPh and PhCH(2)CH·OPh), is shown to be significantly different from that measured in the liquid phase as well as for PPE tethered to the exterior surface of nonporous silica nanoparticles. Tailoring the pore surface with spacer molecules further alters the selectivity such that the PPE reaction channel involving a molecular rearrangement (O-C phenyl shift in PhCH(2)CH·OPh), which accounts for 25% of the products in the liquid phase, can be virtually eliminated under pore confinement conditions. The origin of this change in selectivity is discussed in the context of steric constraints on the rearrangement path inside the pores, surface and pore confinement effects, pore surface curvature, and hydrogen bonding of PPE with residual surface silanols supplemented by nitrogen physisorption data and molecular dynamics simulations.  相似文献   

    14.
    Allyl phenyl ether polymerized rapidly and quantitatively to a resin with a structure similar to a phenolic thermoset in the presence of boron trifluoride etherate at 50°C. The structure and properties of this polyphenol were studied. A reaction mechanism involving rearrangement was discussed.  相似文献   

    15.
    The pyrolysis of wheat straw has been carried out by means of thermogravimetric analysis in inert atmosphere. The samples were heated over a range of temperatures that includes the entire range of pyrolysis with three different heating rates of 5, 10 and 20 K min−1. The activation energy values as a function of the extent of conversion for the pyrolysis process of wheat straw have been calculated by means of the Flynn–Wall–Ozawa isoconversional method, the Vyazovkin–Sbirrazzuoli isoconversional method and an iterative isoconversional method presented in this article. The results have showed that there are small differences between the activation energy values obtained from the three methods, and the pyrolysis process reveals a dependence of the activation energy on conversion and have indicated the validity of the iterative integral isoconversional method. The effective activation energy for the pyrolysis of wheat straw is 130–175 kJ mol−1 in the conversion range of 0.15–0.85. Furthermore, the prediction of the pyrolysis process under isothermal conditions from the dependence of the activation energy on the extent of conversion has been presented.  相似文献   

    16.
    17.
    The label-free time-resolved reflectometric interference spectroscopy has been used to study the interaction of the human estrogen receptor alpha (ERa) and different types of ligands. Different possible sensor surface coatings including various estrogen derivatives were evaluated for their suitability for detection of ERa. The determination of the kinetic and thermodynamic constants was carried out for the interaction in the heterogeneous phase as well as for the interaction in homogeneous phase. In addition, the affinity of 11 ligands ranging from natural hormones and pharmaceuticals to endocrine disrupting chemicals (EDCs) has been determined with this label-free assay format.  相似文献   

    18.
    19.
    20.
    The kinetics of the unimolecular decomposition of phenyl acetate into phenol and ketene, reaction (1): has been studied under very low-pressure conditions between 950 and 1120 K. In this range alternative processes such as the Fries rearrangement to o-hydroxyacetophenone or bond fission into phenoxyl and acetyl radicals are not observed. Based on present and previous evidence a novel four-center transition state is proposed for reaction (1) which corresponds to the high-pressure Arrhenius expression log (k1, s?1) = 12.8 – 56.2/θ, θ = 4.575 × 10?3T kcal/mol.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号