首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a chain of N harmonic oscillators perturbed by a conservative stochastic dynamics and coupled at the boundaries to two gaussian thermostats at different temperatures. The stochastic perturbation is given by a diffusion process that exchange momentum between nearest neighbor oscillators conserving the total kinetic energy. The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. We prove that the stationary state, in the limit as N→ ∞, satisfies Fourier’s law and the linear profile for the energy average  相似文献   

2.
 A class of SOS interface models which can be seen as simplified stochastic Ising model interfaces is studied. In the absence of an external field the long-time fluctuations of the interface are shown to behave as Brownian motion with diffusion coefficient given by a Green-Kubo formula. When a small external field h is applied, it is shown that the shape of the interface converges exponentially fast to a stationary distribution and the interface moves with an asymptotic velocity v(h). The mobility is shown to exist and to satisfy the Einstein relation: , where β is the inverse temperature. Received: 16 April 2002 / Accepted: 3 July 2002 Published online: 22 November 2002 RID="*" ID="*" Work partially supported by the N.S.F. through grants DMS-0071766 and DMS-0074152.  相似文献   

3.
We investigate the stochastic dynamics of an one-dimensional ring with N self-driven Brownian particles. In this model neighboring particles interact via conservative Morse potentials. The influence of the surrounding heat bath is modeled by Langevin-forces (white noise) and a constant viscous friction coefficient γ. The Brownian particles are provided with internal energy depots which may lead to active motions of the particles. The depots are realized by an additional nonlinearly velocity-dependent friction coefficient γ 1(v) in the equations of motions. In the first part of the paper we study the partition functions of time averages and thermodynamical quantities (e.g. pressure) characterizing the stationary physical system. Numerically calculated non-equilibrium phase diagrams are represented. The last part is dedicated to transport phenomena by including a homogeneous external force field that breaks the symmetry of the model. Here we find enhanced mobility of the particles at low temperatures. Received 21 July 2001  相似文献   

4.
We investigate a one-dimensional chain of 2N harmonic oscillators in which neighboring sites have their energies redistributed randomly. The sites −N and N are in contact with thermal reservoirs at different temperature τ and τ+. Kipnis et al. (J. Statist. Phys., 27:65–74 (1982).) proved that this model satisfies Fourier’s law and that in the hydrodynamical scaling limit, when N → ∞, the stationary state has a linear energy density profile , u ∈[−1,1]. We derive the large deviation function S(θ(u)) for the probability of finding, in the stationary state, a profile θ(u) different from . The function S(θ) has striking similarities to, but also large differences from, the corresponding one of the symmetric exclusion process. Like the latter it is nonlocal and satisfies a variational equation. Unlike the latter it is not convex and the Gaussian normal fluctuations are enhanced rather than suppressed compared to the local equilibrium state. We also briefly discuss more general models and find the features common in these two and other models whose S(θ) is known.  相似文献   

5.
The mean field approach of glassy dynamics successfully describes systems which are out-of-equilibrium in their low temperature phase. In some cases an aging behaviour is found, with no stationary regime ever reached. In the presence of dissipative forces however, the dynamics is indeed stationary, but still out-of-equilibrium, as inferred by a significant violation of the fluctuation dissipation theorem. The mean field dynamics of a particle in a random but short-range correlated environment, offers the opportunity of observing both the aging and driven stationary regimes. Using a geometrical approach previously introduced by the author, we study here the relation between these two situations, in the pure relaxational limit, i.e. the zero temperature case. In the stationary regime, the velocity (v)-force (F) characteristics is a power law vF 4, while the characteristic times scale like powers of v, in agreement with an early proposal by Horner. The cross-over between the aging, linear-response regime and the non-linear stationary regime is smooth, and we propose a parametrization of the correlation functions valid in both cases, by means of an “effective time”. We conclude that aging and non-linear response are dual manifestations of a single out-of-equilibrium state, which might be a generic situation. Received 7 May 2000 and Received in final form 22 August 2000  相似文献   

6.
We demonstrate approach to thermal equilibrium in the fully Hamiltonian evolution of a dynamical Lorentz gas, by which we mean an ensemble of particles moving through a d-dimensional array of fixed soft scatterers that each possess an internal harmonic or anharmonic degree of freedom to which moving particles locally couple. We analytically predict, and numerically confirm, that the momentum distribution of the moving particles approaches a Maxwell-Boltzmann distribution at a certain temperature T, provided that they are initially fast and the scatterers are in a sufficiently energetic but otherwise arbitrary stationary state of their free dynamics—they need not be in a state of thermal equilibrium. The temperature T to which the particles equilibrate obeys a generalized equipartition relation, in which the associated thermal energy k B T is equal to an appropriately defined average of the scatterers’ kinetic energy. In the equilibrated state, particle motion is diffusive.  相似文献   

7.
We propose a new kind of spin manipulation method using a fictitious magnetic field generated by a quasielectrostatic field. The method can be applicable to every atom with electron spins and has distinct advantages of small photon scattering rate and local addressability. By using a CO2 laser as a quasielectrostatic field, we have experimentally demonstrated the proposed method by observing the Rabi oscillation of the ground state hyperfine spin F=1 of the cold 87Rb atoms and the Bose–Einstein condensate.  相似文献   

8.
We study a one-dimensional semi-infinite system of particles driven by a constant positive force F which acts only on the leftmost particle of mass M, called the heavy particle (the h.p.), and all other particles are mechanically identical and have the same mass m < M. Particles interact through elastic collisions. At initial time all neutral particles are at rest, and the initial measure is such that the interparticle distances ξ i are i.i.d. r.v. Under conditions on the distribution of ξ which imply that the minimal velocity obtained by each neutral particle after the first interaction with the h.p. is bigger than the drift of an associated Markovian dynamics (in which each neutral particle is annihilated after the first collision) we prove that the dynamics has a strong cluster property, and as a consequence, we prove existence of the discrete time limit distribution for the system as seen from the first particle, a ψ-mixing property, a drift velocity, as well as the central limit theorem for the tracer particle. Received: 22 March 2000 / Accepted: 8 December 2000  相似文献   

9.
Jane Rosa 《Physica A》2007,386(1):54-62
We consider a Brownian particle in a ratchet potential coupled to a modulated environment and subjected to an external oscillating force. The modulated environment is modelled by a finite number N of uncoupled harmonic oscillators. Superdiffusive motion and Levy walks (anomalous random walks) are observed for any N and for low values of the external amplitude F. The coexistence of left and right running states enhances the power α from the time dependence of the mean square displacement (MSD). It is shown that α is twice the average of the power of the separated left and right MSDs. Normal random walks are obtained by increasing F. We show that the maximal mobility of particles along the periodic structure occurs just before superdiffusive motion disappears and Levy walks are transformed into normal random walks.  相似文献   

10.
We consider the stationary states of a chain of n anharmonic coupled oscillators, whose deterministic Hamiltonian dynamics is perturbed by random independent sign change of the velocities (a random mechanism that conserve energy). The extremities are coupled to thermostats at different temperature T and T r and subject to constant forces τ and τ r . If the forces differ τ τ r the center of mass of the system will move of a speed V s inducing a tension gradient inside the system. Our aim is to see the influence of the tension gradient on the thermal conductivity. We investigate the entropy production properties of the stationary states, and we prove the existence of the Onsager matrix defined by Green-Kubo formulas (linear response). We also prove some explicit bounds on the thermal conductivity, depending on the temperature.  相似文献   

11.
We investigate the energy transport in a one-dimensional lattice of oscillators with a harmonic nearest neighbor coupling and a harmonic plus quartic on-site potential. As numerically observed for particular coupling parameters before, and confirmed by our study, such chains satisfy Fourier’s law: a chain of length N coupled to thermal reservoirs at both ends has an average steady state energy current proportional to 1/N. On the theoretical level we employ the Peierls transport equation for phonons and note that beyond a mere exchange of labels it admits nondegenerate phonon collisions. These collisions are responsible for a finite heat conductivity. The predictions of kinetic theory are compared with molecular dynamics simulations. In the range of weak anharmonicity, respectively low temperatures, reasonable agreement is observed.  相似文献   

12.
The effect of multi-particle Coulomb final state interactions on higher-order intensity correlations is determined in general, based on a scattering wave function which is a solution of the n-body Coulomb Schr?dinger equation in (a large part of) the asymptotic region of n-body configuration space. In particular, we study Coulomb effects on the n-particle Bose–Einstein correlation functions of similarly charged particles and remove a systematic error as big as 100% from higher-order multi-particle Bose–Einstein correlation functions. Received: 24 November 1999 / Published online: 17 March 2000  相似文献   

13.
The quantum statistical properties of the radiation of a one-atom two-level laser with incoherent pumping are analyzed. Solution of the Liouville equation for the density operator in the basis of Fock states shows that stationary radiation from a single-mode laser with incoherent pumping can be in a squeezed (sub-Poissonian) stationary state if the rate of spontaneous decay is lower than the rate of cavity losses and the pump rate. Inside the cavity the Fano factor reaches F=0.85 (15% squeezing). Multiple squeezing (F=0.19) is possible in the transient lasing regime. Significant squeezing obtains at the cavity output; the spectral Fano factor at zero frequency is 0.36 under optimal conditions. Zh. éksp. Teor. Fiz. 115, 1210–1220 (April 1999)  相似文献   

14.
We consider transport diffusion in a stochastic billiard in a random tube which is elongated in the direction of the first coordinate (the tube axis). Inside the random tube, which is stationary and ergodic, non-interacting particles move straight with constant speed. Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. Steady state transport is studied by introducing an open tube segment as follows: We cut out a large finite segment of the tube with segment boundaries perpendicular to the tube axis. Particles which leave this piece through the segment boundaries disappear from the system. Through stationary injection of particles at one boundary of the segment a steady state with non-vanishing stationary particle current is maintained. We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained density profile inside the segment is linear, and (ii) that the transport diffusion coefficient obtained from the ratio of stationary current and effective boundary density gradient equals the diffusion coefficient of a tagged particle in an infinite tube. Thus we prove Fick’s law and equality of transport diffusion and self-diffusion coefficients for quite generic rough (random) tubes. We also study some properties of the crossing time and compute the Milne extrapolation length in dependence on the shape of the random tube.  相似文献   

15.
Consider an infinite system of particles evolving in a one dimensional lattice according to symmetric random walks with hard core interaction. We investigate the behavior of a tagged particle under the action of an external constant driving force. We prove that the diffusively rescaled position of the test particle εX-2 t), t > 0, converges in probability, as ε→ 0, to a deterministic function v(t). The function v(⋅) depends on the initial distribution of the random environment through a non-linear parabolic equation. This law of large numbers for the position of the tracer particle is deduced from the hydrodynamical limit of an inhomogeneous one dimensional symmetric zero range process with an asymmetry at the origin. An Einstein relation is satisfied asymptotically when the external force is small. Received: 5 December 1996 / Accepted: 30 June 1997  相似文献   

16.
Following Einstein, we consider a simple model of a star, namely a spherically symmetric distribution of particles which are all moving along circular orbits around the center of the particle cluster. According to arguments given by Einstein, Laue, Treder and others, the existence of stationary circular motions for all values of r can be considered as a necessary condition for all collapse-free relativistic (classical) theory o gravitation. The discussion shows that, assuming the validity of the weak principle of equivalence and the principle of causality, one has to consider theories with a g00-function different from the Einstein-Schwarzschild one. We discuss some g00 types and show that our point of view leads in the direction of gravitational equations with a cut-off length.  相似文献   

17.
Dyson’s model is a one-dimensional system of Brownian motions with long-range repulsive forces acting between any pair of particles with strength proportional to the inverse of distances with proportionality constant β/2. We give sufficient conditions for initial configurations so that Dyson’s model with β = 2 and an infinite number of particles is well defined in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The class of infinite-dimensional configurations satisfying our conditions is large enough to study non-equilibrium dynamics. For example, we obtain the relaxation process starting from a configuration, in which every point of \mathbbZ{\mathbb{Z}} is occupied by one particle, to the stationary state, which is the determinantal point process with the sine kernel.  相似文献   

18.
We study phenomenon of electromagnetically induced absorption (EIA) in the Hanle configuration by applying a perturbative method to solve linear system of optical Bloch equations (OBEs) for the case of closed F g = 1 → F e = 2 transition. The method is applied assuming stationary case and a weak laser fields (Ω ≪ Γ, i.e., Rabi frequency small compared to spontaneous emission rate). This way, we calculate (both numerically and analytically) higher order corrections to density matrix. Odd corrections give contributions to optical coherences, while even corrections contribute to populations and Zeeman coherences. The method gives insight into mechanism of transfer of coherences and transfer of populations between Zeeman sublevels. We have found that the ground-state coherences (2nd correction to coherences) are crucial for the 4th correction to the change of populations which brings EIA type behavior of the Hanle spectrum. Using exact analytical expressions we further discuss further the role of decoherence of the ground-state sublevels when forming EIA.  相似文献   

19.
We have developed a methodology for obtaining a Fokker-Planck equation for nonlinear systems with multiple stationary states that yields the correct system size dependence, i.e., exponential growth with system size of the relaxation time from a metastable state. We show that this relaxation time depends strongly on the barrier heightU(x) between the metastable and stable states of the system. For a Fokker-Planck (FP) equation to yield the correct result for the relaxation time from a metastable state, it is therefore essential that the free energy functionU(x) of the FP equation not only correctly locate the extrema of U(x), but also have the correct magnitudeU at these extrema. This is accomplished by so choosing the coefficients of the FP equation that its stationary solution is identical to that of the master equation that defines the nonlinear system.This work was supported in part by the National Science Foundation under Grant CHE 75-20624.  相似文献   

20.
We consider a Hamiltonian system made of weakly coupled anharmonic oscillators arranged on a three dimensional lattice , and subjected to stochastic forcing mimicking heat baths of temperatures T 1 and T 2 on the hyperplanes at 0 and N. We introduce a truncation of the Hopf equations describing the stationary state of the system which leads to a nonlinear equation for the two-point stationary correlation functions. We prove that these equations have a unique solution which, for N large, is approximately a local equilibrium state satisfying Fourier law that relates the heat current to a local temperature gradient. The temperature exhibits a nonlinear profile. Partially supported by the Academy of Finland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号