首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
A rapid, selective and sensitive method for analysis of trace flavonoids and its glycoside derivatives in ginkgo has proposed. Ultrasonic‐assisted extraction of sample preparation was adopted to extract trace flavonoids in ginkgo leaf and its processed product. The compounds were identified using liquid chromatography negative electrospray ionization triple quadrupole tandem mass spectrometry (MS/MS). The neutral loss scan mode of MS/MS was used to screen flavonoid compounds and those compounds with acid group, or having rhamnosyl, glucosyl, or coumaroyl moiety in the samples. The successive data‐dependent product ion scan mode of MS/MS was used to identify the structure of the components. The analytical results represented three aglycone flavonoids and seven flavonoid glycosides in ginkgo. The method detection limits were evaluated for the analytes analyzed in the range of 0.88 to 2.67 μg/mL.  相似文献   

2.
In this paper, the study of antioxidant activity and phenolic composition of three different extracts (EtOAc, n-BuOH and H(2)O) of field horsetail (Equisetum arvense L.) is presented. The antioxidant activity has been evaluated measuring the total reducing power (expressed by Ascorbate Equivalent Antioxidant Capacity - AEAC), inhibition of lipid peroxidation, and free radical scavenging capacity (RSC) towards 2,2-diphenyl-1-picrylhydrazyl (DPPH radical) and nitric oxide (NO), respectively. In addition, the total flavonoid content (TFC) and phenolic constituents of each extract have been determined. The results obtained show that the highest RSC regarding both DPPH and NO radicals is expressed by EtOAc extract (EC(50)=2.37 microg/mL and EC(50)=90.07 microg/mL, respectively), and the lowest by H(2)O extract (EC(50)=37.2 microg/mL and EC(50)>333.33 microg/mL, respectively). n-BuOH extract showed the highest total reducing power (AEAC=13.40 microg/mL). Differences in the phenolic composition of examined extracts are found comparing the HPLC chemical profiles. Although, isoquercitrin is the main flavonoid in both EtOAc and n-BuOH extracts, a considerable amount of di-E-caffeoyl-meso-tartaric acid was presented in the n-BuOH extract. In H(2)O extract high content of phenolic acids and low percentage of flavonoids were detected.  相似文献   

3.
Natural product screening in plants has always been a difficult task due to the complex nature of the plant material and diverse structures of the compounds present in them. Flavonoids are important and diverse class of plant secondary metabolites with numerous medicinal activities. The present study focuses on the development of a high-resolution tandem mass spectral library for the rapid and authentic identification of common flavonoids. A total of forty flavonoid standards belong to class flavones, isoflavones, flavanones, flavanols and anthocyanins were pooled into two solutions applying logP-based strategy. The flavonoids were analyzed using LC-QTOF-MS high-resolution mass spectrometer with optimization of different instrumental parameters to achieve good sensitivity. The library was built by incorporating names, molecular formulae, exact masses, and MS, and MS/MS spectra of analyzed flavonoids using Bruker Library Editor tool. The fragmentation pattern observed for the standard compounds were compared to the fragments reported in the literature. To assess the practical implications, an extract of tea sample was analyzed and screened using the developed library, which resulted in the identification of three common flavonoids based on their HR-ESI-MS/MS spectral features. The established LC-HR-MS/MS method can be used for the targeted identification of flavonoids in complex samples like food material from different botanical families.  相似文献   

4.
An ultraviolet spectrophotometric method was validated for total flavonoid quantitation, as rutin equivalents, present in the Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. Parameters as linearity, interval (range), specificity, estimated limit of detection (LOD, microg/mL), estimated limit of quantitation (LOQ, microg/mL), recovery (R, %), precision or relative standard deviation (RSD, %), and accuracy (E, %) were established. The analytical method was validated according to the experimental results: correlation coefficient (r = 0.9997); interval (RSD = 0.15-0.47%; E = 98.98-101.24%); specificity to total flavonoids quantitation, as rutin equivalents, at wavelength 361.0 nm; LOD = 0.09 microg/mL and LOQ = 0.27 microg/mL; R = 99.36-102.14%; adequate intra- and interrun precision (0.30-0.49% and 0.31-0.81%), and intra- and interrun accuracy (100.60-102.38% and 98.58-100.38%).  相似文献   

5.
An ion chromatographic method with conductivity detection for the simultaneous determination of ephedrine, pseudoephedrine and norephedrine was developed. A mixture of 2.0 mmol/L HNO3 and 2% (v/v) acetonitrile was used as eluent. The three ephedrine-like compounds were separated and determined within 20 min. The linear ranges were 0.08-50 microg/mL for ephedrine, 0.08-40 microg/mL for pseudoephedrine and 0.06-40 microg/mL for norephedrine. The detection limits were 0.03 microg/mL for ephedrine and pseudoephedrine, and 0.02 microg/mL for norephedrine. The method has been applied successfully to the determination of these sympathomimetics in pharmaceutical preparations and in Ephedra herbs.  相似文献   

6.
A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions were optimized for a group of 22 analytes comprising 17 glucocorticosteroids, specific designer steroids such as tetrahydrogestrinone (THG) and specific beta2-agonists such as formoterol. The UPLC/TOFMS separation obtained required 5.5 min only for all the substances tested. Even the critical pair of dexamethasone and betamethasone isomers was almost completely resolved. Thanks to the over 10,000 full-width at half maximum (FWHM) mass resolution and high mass accuracy features of TOFMS 50 mDa window accurate mass chromatograms could be reconstructed for the individual analytes. Sensitive screening in human and calf urine samples fortified at the glucocorticosteroids minimum required performance limit (MRPL) of 30 microg L(-1) (human urine, sports doping) and 2 microg L(-1) (calf urine, veterinary control) could be obtained. The potential of UPLC/TOFMS for confirmatory analysis was shown by determining the accurate mass of all compounds and fragment ions upon in-source collision-induced dissociation (CID) at different energies. The exact mass measurement errors for all glucocorticosteroids were found to be within 6 ppm. Considering veterinary control, limits of detection (LOD) and limits of quantification (LOQ) were determined for most of the analytes in calf urine and found to range from 0.1 to 3.3 and from 0.4 to 4.4 microg L(-1), respectively. The method can be easily extended with other banned substances of interest, as demonstrated by the addition of 21 beta2-agonists to the original analyte mixture in urine, without causing any interferences.  相似文献   

7.
A simple, rapid and sensitive method was developed for the simultaneous quantification of chlorogenic acid (CGA) and caffeic acid (CA) in rat plasma using a high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile followed by centrifugation. The analytes and internal standard ferulic acid were separated on an Intersil C8-3 column (5 mm; 250 x 2.1 mm) with acetonitrile/0.05% triethylamine solution (70:30, v/v) as mobile phase at a flow rate of 0.2 mL/min with an operating temperature of 30 degrees C. Detection was performed on a quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source operated in selected ion monitoring (SIM) mode. Negative ion ESI was used to form deprotonated molecules at m/z 353 for chlorogenic acid, m/z 179 for caffeic acid, and m/z 193 for the internal standard ferulic acid. Linear detection responses were obtained for CGA concentrations ranging from 0.005 to 2.0 microg/mL and for CA concentrations ranging from 0.010 to 2.0 microg/mL and the lower limits of quantitation (LLOQs) for CGA and CA were 0.005 and 0.01 microg/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.0% for both analytes. Deviation of the assay accuracies was within +/-10.0% for both analytes. Their average recoveries were greater than 88.0%. Both analytes were proved to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to the pharmacokinetic study of CGA and CA following an intravenous dose of 5 mL/kg mailuoning injection to rats.  相似文献   

8.
The applicability of comprehensive two-dimensional gas chromatography (GC×GC) for flavonoids analysis was investigated by separation and identification of flavonoids in standards, and a complex matrix natural sample. The modulation temperature was optimized to achieve the best separation and signal enhancement. The separation pattern of trimethylsilyl (TMS) derivatives of flavonoids was compared on two complementary column sets. Whilst the BPX5/BPX50 (NP/P) column set offers better overall separation, BPX50/BPX5 (P/NP) provides better peak shape and sensitivity. Comparison of the identification power of GC×GC-TOFMS against both the NIST05 MS library and a laboratory (created in-house) TOFMS library was carried out on a flavonoid mixture. The basic retention index information on high-performance capillary columns with a non-polar stationary phase was established and database of mass spectra of trimethylsilyl derivatives of flavonoids was compiled. TOFMS coupled to GC×GC enabled satisfactory identification of flavonoids in complex matrix samples at their LOD over a range of 0.5-10 μg/mL. Detection of all compounds was based on full-scan mass spectra and for each compound a characteristic ion was chosen for further quantification. This study shows that GC×GC-TOFMS yields high specificity for flavonoids derived from real natural samples, dark chocolate, propolis, and chrysanthemum.  相似文献   

9.
The continuing emergence of designer drugs imposes high demands on the scope and sensitivity of toxicological drug screening procedures. An ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method was developed for screening and simultaneous confirmation of both designer drugs and other drugs of abuse in urine samples in a single run. The method covered selected synthetic cannabinoids and cathinones, amphetamines, natural cannabinoids, opioids, cocaine and other important drugs of abuse, together with their main urinary metabolites. The database consisted of 277 compounds with molecular formula and exact monoisotopic mass; retention time was included for 192 compounds, and primary and secondary qualifier ion exact mass for 191 and 95 compounds, respectively. Following a solid-phase extraction, separation was performed by UHPLC and mass analysis by HR-TOFMS. MS, and broad-band collision-induced dissociation data were acquired at m/z range 50–700. Compound identification was based on a reverse database search with acceptance criteria for retention time, precursor ion mass accuracy, isotopic pattern and abundance of qualifier ions. Mass resolving power in spiked urine samples was on average FWHM 23,500 and mass accuracy 0.3 mDa. The mean and median cut-off concentrations determined for 75 compounds were 4.2 and 1 ng/mL, respectively. The range of cut-off concentrations for synthetic cannabinoids was 0.2–60 ng/mL and for cathinones 0.7–15 ng/mL. The method proved to combine high sensitivity and a wide scope in a manner not previously reported in drugs of abuse screening. The method’s feasibility was demonstrated with 50 authentic urine samples.
Figure
Extracted ion chromatograms of metabolites of synthetic cannabinoids and their fragments, including a new common metabolite: JWH-072-propanoic acid  相似文献   

10.
高效液相色谱串联质谱法检测腰果中黄曲霉毒素   总被引:1,自引:0,他引:1  
Bi R  Fan Z  Fu M 《色谱》2011,29(12):1155-1159
建立了腰果中4种黄曲霉毒素的高效液相色谱-串联质谱检测方法(HPLC-MS/MS)。样品用甲醇-水(8:2, v/v)溶液提取后用弗罗里硅土柱净化,5 mL丙酮-水-甲酸溶液(96:3.5:0.5, v/v/v)洗脱,氮吹至干,1 mL甲醇定容;在资生堂MG C18色谱柱(100 mm×3.0 mm, 3 μm)上梯度洗脱分离,然后采用电喷雾离子化三重四极杆串联质谱测定。实验结果表明,4种黄曲霉毒素在各自的线性范围内峰面积与其质量浓度线性关系良好,相关系数(r2)大于0.997;检出限(信噪比为3)为0.009~0.04 μg/kg,定量限(信噪比为10)为0.03~0.12 μg/kg;平均回收率为63.0%~78.5%,相对标准偏差为2.8%~9.1%,均符合痕量分析的要求。评价了基质效应,信号抑制/增强值为88.8%~99.4%,说明净化后的基质效应较小。该方法简单快速、准确可靠,可用于腰果中黄曲霉毒素的检测。  相似文献   

11.
A method incorporating high-performance liquid chromatography (HPLC) with electrospray ionization and tandem mass spectrometry, with parallel analysis by HPLC with UV detection using a diode-array detector, was developed for the qualitative characterization of flavonoids in D. odorifera. Twenty-three flavonoids, including six isoflavones, six neoflavones, four isoflavanones, three flavanones, two chalcones, one isoflavanonol and one pterocarpan, were unambiguously identified by comparing their retention times, UV and MS spectra with those of authentic compounds. Furthermore, the collision-induced dissociations of the [M-H]- ions were studied to clarify the MS behavior of the different types of flavonoids. In negative ion ESI-MS all the flavonoids yielded prominent [M-H]- ions in the first order mass spectra. Fragments involving losses of CH3*, H2O, CO, C2H2O, and CO2 were observed in the MS/MS spectra. Each of the seven types of flavonoid showed characteristic MS/MS fragmentation patterns. The isoflavanones, flavanones and chalcones were observed to undergo retro-Diels-Alder fragmentations. The spectra of almost all the neoflavonoids unexpectedly exhibited only [M-H-CH3]-* radical anions as base peaks without any further fragmentation. Substitution positions also remarkably influenced the fragmentation behavior, which could assist in distinction among the flavonoid isomers. The fragmentation rules deduced here could aid in the characterization of other flavonoids of these types.  相似文献   

12.
A simple, rapid and accurate method for the simultaneous determination of four purine and pyrimidine bases (cytosine, 5-methylcytosine, adenine and N6-methyladenine) has been developed. The quantitative determination of these bases was accomplished by ion chromatography (IC) with direct conductivity detection (CD) based on their ionization in acidic medium without chemical suppression. The recovery of cytosine, 5-methylcytosine, and adenine in calf thymus DNA was more than 98% (n=3) and the relative standard deviation (RSD, n=5) less than 2.4%. In a single chromatographic run, the four bases could be separated and determined in less than 10 min. The detection limits were found to be 0.05 microg/mL for cytosine, 0.08 microg/mL for 5-methylcytosine, 0.07 microg/mL for adenine, and 0.07 microg/mL for N6-methyladenine. Linear ranges were 0.2-95.1 microg/mL for cytosine (r2=0.9996), 0.3-196.6 microg/mL for 5-methylcytosine (r2=0.9994), 0.3-105.5 microg/mL for adenine (r2=0.9998), and 0.3-159.1 microg/mL for N6-methyladenine (r2=0.9999). With the proposed method, purine and pyrimidine bases could be successfully detected in calf thymus DNA. We also determined these bases in calf thymus DNA using RP-HPLC. Compared to RP-HPLC, the IC method offers advantages such as high selectivity and simple mobile phase.  相似文献   

13.
High-performance liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometry and photodiode array detection (HPLC-DAD-ESI-MS(n)) was developed to identify and characterize the flavonoids in a Chinese formulated preparation, Longdan Xiegan Decoction (LXD). In total, fifty-one flavonoids (27 flavones, 10 flavanones, 7 chalcones, 5 flavonols and 2 isoflavones) were characterized. Eighteen compounds among them including a newly detected flavonoid, naringin, from the ingredient herbs, were unambiguously determined by comparing the retention times (t(R)), UV spectral data and mass fragmentation behaviors with those of the reference compounds. Another thirty-three compounds were tentatively identified by referencing to the reported data of their UV and MS spectra. The ESI-MS/MS fragmentation behavior of flavones (OMe-substituted, O-glycosides, C-glycosides), chalcones, flavonols and their appropriate characteristic pathways were proposed. In negative ion ESI-MS all the flavonoids yielded prominent [M--H](-) ions in the first order mass spectra. Fragmentation with a loss of mass of 15 Da (CH(3)), 18 Da (H(2)O), 28 Da (CO), 44 Da (CO(2)), 56 Da (2CO) and the residues of glucose and glucuronic acid observed in the MS/MS spectra were useful for aiding the structural identification of the flavonoids investigated.  相似文献   

14.
Linear alkylbenzene sulfonates (LAS) have been determined in samples of the influent and the effluent, and in the sludge, from sewage-treatment plants (STP). LAS and sulfophenyl carboxylate compounds (SPC) were isolated by solid-phase extraction (SPE) with the polymeric phase Isolute ENV, then determined by liquid chromatography-electrospray mass spectrometry (LC-ESI-MS). The method enabled unequivocal identification of C10-C13 LAS by monitoring the ion at m/z 183 and the base peak corresponding to the [M-H]- ion. Average recoveries varied from 77-93% and the linear range of the method varied from 0.2 to 10 microg L(-1), with a limit of detection ranging from 10 ng L(-1) to 1.5 microg L(-1) when 200 mL waste water were preconcentrated. For sewage sludge, recoveries varied from 58 to 90% and the linear range was between 0.2 and 100 microg L(-1), with a detection limit ranging from 0.4 to 120 microg kg(-1) when 2.5 g sewage sludge was extracted. Unequivocal identification and determination of some metabolites of the LAS, the sulfophenyl carboxylate compounds (SPC), was achieved by monitoring [M-H]- ions.  相似文献   

15.
Monitoring of anti-tuberculosis drug concentrations and dose adjustment can be helpful in cases that show poor response to treatment. Here, we describe a method that can rapidly and simultaneously measure the blood concentrations of four anti-tuberculosis drugs (isoniazid, rifampicin, pyrazinamide, and ethambutol) and two major metabolic ratios (acetylisoniazid/isoniazid and 25-desacetylrifampicin/rifampicin) using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). A C18 reversed-phase column and gradients of methanol in 0.3% formic acid and water were used for HPLC separation. The drug concentrations were determined by multiple reaction monitoring in positive ion mode and the assay performance was evaluated. We determined peak concentration ranges for each drug and acetylisoniazid/isoniazid and 25-desacetylrifampicin/rifampicin ratios by analyzing 2-h post-dose samples in patients treated with standard dosing as a first-line treatment. The preparation of 20 samples including two steps of deproteinization with 50% and 100% methanol was performed within 20 min and chromatographic separation was achieved within 4 min/sample. Interassay calibration variability data obtained over concentrations of 0-8 microg/mL for isoniazid and ethambutol and 0-80 microg/mL for rifampicin and pyrazinamide showed a linear and reproducible curve. Within-run and between-run imprecision (CVs) were 1.9-5.5% and 3.5-10.5% and the lower limits of detection and quantification were 0.01-0.5 microg/mL and 0.05-1.0 microg/mL, respectively. The isoniazid concentration was found to be inversely correlated to the acetylisoniazid/isoniazid ratio (R=-0.739, P<0.001). The devised method allows for the simple, rapid, sensitive and reproducible quantification of isoniazid, rifampicin, pyrazinamide, ethambutol and their two metabolic ratios and should be helpful for therapeutic drug monitoring in tuberculosis patients.  相似文献   

16.
Rhubarb (Rhei rhizoma), a commonly used Chinese herb, contains anthraquinones, anthrones, galloylglucoses, stilbenes, and flavan-3-ols compounds, etc. as major constituents. Using 19 of these compounds as markers, an HPLC-UV-MS method was developed to estimate the quality of rhubarb samples within a period of 70 min. Extracts were analyzed with a Cosmosil 5C18-MS column and eluted with a gradient comprising an aqueous solution of acetic acid and methanol at a flow rate of 0.9 mL/min. Peaks were detected by absorbance measurements at 254 nm (6 and 8-19) and 280 nm (1-5 and 7), and the peaks of the marker substances were identified from their UV spectra and MS fragmentation patterns. The proposed method yielded a peak-area ratio RSD value with an intraday SD falling within 0.71-1.78% and an interday SD within 0.78-1.98% at a detection limit of 0.2-3.2 microg/mL. The ESI negative ion mode was used to collect data (molecular weight, CID fragments from MS and MS/MS spectra) for 19 compounds from four types of structure categories: anthraquinones, dianthrone glycosides, stilbenes, and galloylglucosides. The information gathered can be used to identify the structures of various peaks appearing in the LC chromatograms of rhubarb samples.  相似文献   

17.
The manganese-tetrasulfonatophthalocyanine (MnTSPc) catalyzed luminol-hydrogen peroxide chemiluminescence (CL) systems can be quenched in the presence of proteins. A highly sensitive CL quenching method has been developed for the determination of proteins. Under optimum conditions, the linear ranges of the calibration curves were 0.1-20 microg/mL for human serum albumin (HSA), 0.2-20 microg/mL for human gamma-IgG, and 0.5-50 microg/mL for the bovine serum albumin (BSA) with the corresponding detection limits were 1.9 ng/mL, 2.7 ng/mL, and 3.4 ng/mL. The method has been applied to the analysis of total proteins in human serum samples and the results were in good agreement with clinical data provided.  相似文献   

18.
Identification of flavonoids and flavonoid glycosides was carried out on Psidium guajava Linn leaves by means of high-performance liquid chromatography ultraviolet (HPLC-UV) analysis and HPLC mass spectrometry. By using HPLC-UV, two known phenolics (gallic acid and quercetin) and five newly reported ones (procatechuic acid, chlorogenic acid, caffeic acid, kaempferol and ferulic acid) were identified in alcohol guava leaf extract. Structural information about the compounds was obtained from the retention times, the UV spectra and mass spectra without the need to isolate the individual compounds. Two flavonoids (quercetin and kaempferol) and four flavonoid glycosides (three known components, quercetin 3-O-alpha-L-arabinoside, quercetin 3-O-beta-D-glucoside and quercetin 3-O-beta-D-galactoside, along with one novel compound, kaempferol-glycoside) and three other unknown compounds have been identified in the fractions.  相似文献   

19.
The antioxidant activity of the crude extract and solvent fractions obtained from the leaves of Bauhinia galpinii was evaluated in terms of capacity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. The crude extract and the more polar solvent fractions (ethyl acetate and butanol) showed considerable antioxidant activity. The antioxidant potential of the extracts, expressed as EC50, ranged between 28.85 +/- 1.28 microg mL(-1)and 118.16 +/- 6.41 microg mL(-1). L-Ascorbic acid was used as a standard (EC50 = 19.79 +/- 0.14 microM). Bioassay guided fractionation of the two active solvent fractions led to the isolation of three flavonoid glycosides, identified as: quercetin-3-O-galactopyranoside (1), myricetin-3-O-galactopyranoside (2), and 2'-O-rhamnosylvitexin (3). These compounds are reported for the first time from this species. The structures of the compounds were determined on the basis of spectral studies (1H NMR, 13C NMR and MS). Their antioxidant potential was evaluated using a DPPH spectrophotometric assay. Compound 2 had higher and 3 had lower antioxidant activity than L-ascorbic acid. No cytotoxic effects were displayed by compounds 1 and 3, but compound 2 was cytotoxic to Vero cells (LC50 = 74.68 microg mL(-1)) and bovine dermis cells (LC50 = 30.69 microg mL(-1)).  相似文献   

20.
朱昱  谭家镒  孙毓庆 《色谱》2002,20(5):394-397
 建立了分析尿中硝西泮主要代谢物 7 氨基硝西泮 (7 ANIZ)的三甲基硅烷衍生化 气相 /质谱联用方法。尿样经乙醚 乙酸乙酯 (体积比为 99∶1 )萃取后 ,用N ,O 双 (三甲基硅 )三氟乙酰胺进行衍生化 ,检测衍生物的总离子流。根据 7 ANIZ衍生物质谱中主要特征离子的相对丰度及其质量的保留时间进行定性分析 ;用 7 氨基氯硝西泮做内标 ,根据衍生物基峰离子的质量进行定量分析。本方法中 7 ANIZ的萃取率为 82 8% ,线性范围为 1 0 μg/L~ 50 0 μg/L,检出限为 1 2 μg/L,定量限为 3 5μg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号