首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张珂  李万平 《实验力学》2010,25(5):581-588
应用粒子图像测速(PIV)系统对平板湍流边界层内流向和法向的瞬时速度进行了测量。湍流的能量耗散率由轴对称假设得到,同时在研究湍流动能耗散率标度律的过程中采用传统的统计学方法。实验结果显示,对于不同尺度上和不同法向位置湍流耗散率标度律来说,湍流耗散主要发生在小尺度上,也就是说湍动能耗散率标度律在小尺度上具有普适性。另外,根据层次结构理论假设,通过PIV实验数据对最高激发态的标度指数进行了研究,结果发现,最高激发态存在绝对标度指数,并且绝对标度律是由信号中最强耗散涨落的局部结构产生的。  相似文献   

2.
Laser Doppler velocity measurements are carried out in a turbulent boundary layer subjected to concentrated wall suction (through a porous strip). The measurements are taken over a longitudinal distance of 9× the incoming boundary layer thickness ahead of the suction strip. The mean and rms velocity profiles are affected substantially by suction. Two-point measurements show that the streamwise and wall-normal autocorrelations of the streamwise velocity are reduced by suction. It is found that suction alters the redistribution of the turbulent kinetic energy k between its components. Relative to the no-suction case, the longitudinal Reynolds stress contributes more to k than the other two normal Reynolds stresses; in the outer region, its contribution is reduced which suggests structural changes in the boundary layer. This is observed in the anisotropy of the Reynolds stresses, which depart from the non-disturbed boundary layer. With suction, the anisotropy level in the near-wall region appears to be stronger than that of the undisturbed layer. It is argued that the mean shear induced by suction on the flow is responsible for the alteration of the anisotropy. The variation of the anisotropy of the layer will make the development of a turbulence model quite difficult for the flow behind suction. In that respect, a turbulence model will need to reproduce well the effects of suction on the boundary layer, if the model is to capture the effect of suction on the anisotropy of the Reynolds stresses.  相似文献   

3.
The effect of pulse-width modulated (PWM) blowing/suction through a hole in a flat plate, above which a Blasius boundary layer develops, is studied. A hot wire is used to measure the streamwise velocity downstream of the hole. The PWM blowing/suction is found to create amplitude-modulated variations in the streamwise velocity, which are well correlated with the signal generating the disturbance.  相似文献   

4.
Suction on a turbulent boundary layer is applied through a narrow strip in order to understand the effects suction can have on the boundary layer development and turbulent structures in the flow. Detailed two-component laser Doppler velocimetry (LDV) and laser-induced fluorescence (LIF) based measurements have been undertaken in regions close to the suction strip and further downstream. The region close to the strip involves a flow reversal accompanied by a change in sign for the Reynolds shear stress and strong gradients in the flow variables. The mean streamwise velocity after suction remains larger than its corresponding no-suction value. Relative to the no-suction case, the velocity fluctuations first decrease with suction followed by a slow recovery which may involve a slight overshoot. LIF visualizations indicate that compared to the no-suction case, the low-speeds streaks stay closer to the wall and exhibit a smaller amount of spanwise and wall-normal oscillations with suction. The visualization results are consistent with two-point velocity correlation measurements. The streamwise and spanwise correlation measurements indicate that the structures are disrupted or removed from the boundary layer due to suction suggesting that the original boundary layer has been strongly influenced by suction. The results are explained by the development of a new inner layer that forms downstream of the suction strip.  相似文献   

5.
A high Reynolds number flat plate turbulent boundary layer was studied in a wind-tunnel experiment using particle image velocimetry (PIV). The flow is subjected to an adverse pressure gradient (APG) which is designed such that the boundary layer separates and reattaches, forming a weak separation bubble. With PIV we are able to get a more complete picture of this complex flow phenomenon. The view of a separation bubble being composed of large scale coherent regions of instantaneous backflow occurring randomly in a three-dimensional manner in space and time is verified by the present PIV measurements. The PIV database was used to test the applicability of various velocity scalings around the separation bubble. We found that the mean velocity profiles in the outer part of the boundary layer, and to some extent also the Reynolds shear-stress, are self-similar when using a velocity scale based on the local pressure gradient. The same can be said for the so called Perry–Schofield scaling, which suggests that the two velocity scales are connected. This can also be interpreted as an experimental evidence of the claimed relation between the latter velocity scale and the maximum Reynolds shear-stress.  相似文献   

6.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

7.
The response of the boundary layer on a plate with a blunt leading edge to frozen-in vortex perturbations whose vorticity is normal to the plate surface is found. It is shown that these vortices generate an inhomogeneity of the streamwise velocity component in the boundary layer. This inhomogeneity is analogous to the streaky structure developing as the degree of free-stream turbulence increases. The dependence of the amplitude and shape of the boundary layer inhomogeneity on the distance from the leading edge, the streamwise and spanwise scales, and other parameters is found for periodic and local initial perturbations. It is shown that the receptivity of the boundary layer decreases with increase in the frequency and with decrease in the streamwise perturbation scale.  相似文献   

8.
Previous studies on boundary layer transition at moderate levels of free stream turbulence (FST) have shown that the transition process can be promoted by the introduction of Tollmien-Schlichting (TS) waves. In the present work the interaction between localized boundary layer disturbances and controlled TS-waves is studied experimentally. The localized disturbances are generated either from a controlled free stream perturbation, or by means of suction or injection through a slot in the flat plate surface. Both methods result in boundary layer disturbances dominated by elongated streamwise streaks of high and low velocity in the streamwise component. A strong interaction is observed preferably for high frequency TS-waves, which are damped when generated separately, and the interaction starts as a local amplification of a wide band of low-frequency oblique waves. The later stages of the transition process can be identified as a non-linear interaction between the oblique structures, leading to regeneration of new and stronger streamwise streaks.  相似文献   

9.
10.
The turbulent flow structure and vortex dynamics of a jet-in-a-crossflow (JICF) problem, which is related to gas turbine blade film cooling, is investigated using the particle-image velocimetry (PIV) technique. A cooling jet emanating from a pipe interacts with a turbulent flat plate boundary layer at a Reynolds number Re = 400,000. The streamwise inclination of the coolant jet is 30° and two velocity ratios (VR = 0.28, VR = 0.48) and two mass flux ratios (MR = 0.28, MR = 0.48) are considered. Jets of air and CO2 are injected separately into a boundary layer to examine the effects of the density ratio between coolant and mainstream on the mixing behavior and consequently, the cooling efficiency. The results show a higher mass flux ratio to enlarge the size of the recirculation region leading to a more pronounced entrainment of hot outer fluid into the wake of the jet. Furthermore, the lateral spreading of the coolant is strongly increased at a higher density ratio. The results of the experimental measurements are used to validate numerical findings. This comparison shows an excellent agreement for mean velocity and higher moment velocity distributions.  相似文献   

11.
The temporal evolutions of small, streamwise elongated disturbances in the asymptotic suction boundary layer (ASBL) and the Blasius boundary layer (BBL) are compared. In particular, initial perturbations localized (δ-functions) in the wall-normal direction are studied, corresponding to an axi-symmetric jet coming out of a plane parallel to the flat plate. Analytical solutions are presented for the wall-normal and streamwise velocities in the ASBL case whereas both analytical and numerical methods are used for the BBL case. The initial position of the perturbation and its spanwise wave number are varied in a parameter study. We present results of maximum amplitudes obtained, the time to reach them, their position and optimal spanwise scales. Free-stream disturbances are shown to migrate towards the wall and reach their (negative) optimum inside the boundary layer. The migration is faster for the ASBL case and a larger amplitude is reached than for the BBL. For perturbations originating inside the boundary layer the amplitudes are overall larger and show the phenomenon of overshoot, i.e. positive amplitudes moving out of the boundary layer. The overall largest amplitudes are obtained for the BBL case, as in other studies, but it is shown that for free-stream disturbances initiated somewhere downstream the leading edge streak growth may be amplified due to suction since in the BBL the disturbance mainly advects above the boundary layer.  相似文献   

12.
The experimental study of the turbulent boundary layer under external flow conditions similar to those found on the suction side of airfoils in trailing-edge post-stall conditions has been performed. Detailed boundary layer measurements were carried out with a PIV system and a two-sensor wall probe. They cover the region downstream of the suction peak where the boundary layer is subjected to a very strong adverse pressure gradient and has suffered from an abrupt transition from strong favorable to strong adverse pressure gradients. The experiments show that in spite of these severe conditions, the boundary layer is surprisingly able to recover a state of near-equilibrium before separating. In this near-equilibrium zone, the mean velocity defect and all the measured Reynolds stresses are self-similar (in the outer region) with respect to the outer scales δ and U e δ*/δ. The mean momentum balance indicates that for the upper half of the outer region, the advection terms dominate all the stress-gradient terms in the zone prior to separation. A large portion of the outer region has therefore become essentially an inertial flow zone where an approach toward equilibrium is expected.An erratum to this article can be found at  相似文献   

13.
The flow over a deep cavity at low subsonic velocity is considered in the present paper. The cavity length-to-depth aspect ratio is L/H = 0.2. Single hot-wire measurements characterized the incident turbulent boundary layer and show the influence of the cavity on the streamwise statistic components just downstream from the cavity. The streamwise mean and fluctuating velocity profiles are affected by the cavity. PIV measurements reveal the presence for ejection-like events responsible of local perturbations of the skewness and the flatness coefficients. Time-resolved PIV technic is also used to characterize phase properties of shear layer oscillating cycle. It is shown that for deep cavity with first Rossiter mode, only one vortical structure is formed at the cavity leading edge. Then, it grows while convecting downstream along the shear layer. A well-defined ejection process begins after the vortex impact near the cavity downstream corner. A cylinder device placed spanwisely near the cavity leading edge eliminates the resonance and highly modifies the behavior of the shear layer flow. In fact, the shear layer could be divided into upper and lower parts with different structure aspects.  相似文献   

14.
This paper describes an experimental investigation of the interaction between the boundary layer on a horizontal floor of a shallow open channel flow and the wake of a thin flat plate mounted vertically on the floor of the channel. The nominal thickness of the flat plate was limited to 2 mm in order to minimize the effect of the flume side walls on the generated wake. Two flat plate chord to thickness ratios (10 and 25) and two depths of flow (50 and 80 mm) were considered. The boundary layer thickness of the approaching flow was comparable with the depth of flow. The recovery of the boundary layer is then studied by observing the characteristics of the velocity profile downstream of the flat plate along the wake axis. The results indicate that the recovery process is slow, and that it is clearly non-monotonic. When compared with the approaching flow, the streamwise turbulence intensity values increase in the near-wake region followed by a gradual but slow decrease with increasing axial distance. Neither mean nor higher-order moments indicate a complete recovery even at large distances from the wake generator. The present results also indicate that the inner region appears to develop more quickly than the outer flow. Since the development of the quasi-two-dimensional wake is also of interest, velocity measurements are also presented along the wake cross-section. These velocity profiles indicate that the wake effects are still prevalent at 200 plate widths downstream of the wake generator. Through a proper choice of scaling variables, the mean velocity profiles across the wake can be collapsed onto a single curve, indicating a sense of similarity. Received: 23 September 1999/Accepted: 30 August 2000  相似文献   

15.
赵伟  李万平 《力学学报》2007,39(1):23-36
利用高分辨率、高帧率PIV系统对湍流边界层中相干结构的多种空间尺度和边界层内SL 标度律在不同尺度下的具体表达形式进行了实验研究. 实验在两个动量损失厚度雷诺数 (Re_{\theta}=628.5和Re_{\theta}=1032.9)下测量平板湍流边界层中缓冲 层、对数区和外区的二维瞬时速度场. 应用 小波分析以及传统的统计学方法,在垂直于平板和平行于平板的平面内考察平板湍流边界层 中存在的相干结构的流向和展向尺度,并与已知的相干结构尺度实验结果进行了对比分析. 利用在动量损失厚度雷诺数628.5下测得的数据,对多种脉动结构(脉动速度结构等) 的空间关系及其标度律进行了研究. 第2项工作直接利用湍流边界层空间速度分布,对多种 流场尺度结构内部的She-Leveque(简称SL)标度律及自相似律进行了验证. 结果表明,各 单一流场尺度结构内部,流向脉动速度{\pmb u}'、法向脉动速度{\pmb v}'及 脉动涡分量\d {\pmb v}'/\d {\pmb x}的统计结构量均存在明显的标度律,标度 指数的形式与自相似律和SL标度律均非常吻合,只是常数随流场尺度的不同而不同, 且呈现一定的规律性. 但对于结构量的五阶矩随距离l的研究表明,自相似律和SL 标度律成立的范围并不完全一致,同时标度律成立的范围大小与流场尺度有明显关系.  相似文献   

16.
The particle image velocimetry (PIV) and hydrogen-bubble visualization technique are used to investigate the flat-plate boundary layer transition induced by an array of roughness elements. The streamwise evolutions of the mean and fluctuation velocity are analyzed, and the critical Reynolds number Re k,c is determined between 339 and 443 under current experimental setup. The hairpin vortices shed from supercritical roughness elements are visualized by swirling strength, in which two pairs of counter-rotating vortices can be observed: one vortex pair is the manifestation of the neck of the hairpin vortices shed from the top of the roughness; the other vortex pair, which originates from the lower part of the roughness, comes from the streamwise vortices that are constantly perturbed by the hairpin vortex shedding.  相似文献   

17.
A well-known optimization procedure is used to find the optimal disturbances in two different suction boundary layers within the spatial framework. The maximum algebraic growth in the asymptotic suction boundary layer is presented and compared to previous temporal results. Furthermore, the spatial approach allows a study of a developing boundary layer in which a region at the leading edge is left free from suction. This new flow, which emulates the base flow of a recent wind-tunnel experiment, is herein denoted a semi-suction boundary layer. It is found that the optimal disturbances for these two suction boundary layers consist of streamwise vortices that develop into streamwise streaks, as previously found for a number of shear flows. It is shown that the maximum energy growth in the semi-suction boundary layer is obtained over the upstream region where no suction is applied. The result indicates that the spanwise scale of the streaks is set in this region, which is in agreement with previous experimental findings.  相似文献   

18.
An analysis has been performed to study the unsteady laminar compressible boundary layer governing the hypersonic flow over a circular cone at an angle of attack near a plane of symmetry with either inflow or outflow in the presence of suction. The flow is assumed to be steady at time t=0 and at t>0 it becomes unsteady due to the time-dependent free stream velocity which varies arbitrarily with time. The nonlinear coupled parabolic partial differential equations under boundary layer approximations have been solved by using an implicit finite-difference method. It is found that suction plays an important role in stabilising the fluid motion and in obtaining unique solution of the problem. The effect of the cross flow parameter is found to be more pronounced on the cross flow surface shear stress than on the streamwise surface shear stress and surface heat transfer. Beyond a certain value of the cross flow parameter overshoot in the cross flow velocity occurs and the magnitude of this overshoot increases with the cross flow parameter. The time variation of the streamwise surface shear stress is more significant than that of the cross flow surface shear stress and surface heat transfer. The suction and the total enthalpy at the wall exert strong influence on the streamwise and cross flow surface shear stresses and the surface heat transfer except that the effect of suction on the cross flow surface shear stress is small.  相似文献   

19.
夏振炎  姜楠  王振东  舒玮 《力学学报》2006,38(6):741-748
采用热线风速仪测量受吹吸扰动的壁湍流边界层的流向速度,用傅里叶变换和子波变换研究 吹吸扰动对壁湍流能谱的影响,结果显示施加的低频扰动使边界层内层大尺度结构的能量减 少,小尺度结构的能量有所增强,远离壁面时扰动强度逐步衰减直到在外层中消失;通过VITA 法和子波变换法检测猝发事件,表明该扰动降低了猝发强度,使猝发周期延长,条件平均速 度波形的幅值降低、持续时间变短,说明扰动明显抑制了相干结构的猝发过程. 利用子波变 换可以实现湍谱分析,能有效检测猝发中的湍流结构,是一种客观的分析工具.  相似文献   

20.
This study examines the pronounced periodicity of large-scale coherent structures in turbulent boundary layers, which are of the order of the boundary layer thickness (δ) and reside in the logarithmic and wake regions. To this end, a series of multi-camera planar particle image velocimetry (PIV) measurements are conducted in a streamwise/spanwise and streamwise/wall-normal planes at a friction Reynolds number of Reτ ≈ 2500. The experiments are configured to capture a large field-of-view with velocity fields that cover a streamwise extent in excess of 15δ. The resulting vector fields reveal large-scale streamwise and spanwise organisation instantaneously, which is often lost when only examining mean statistics. By extracting the dominant streamwise and spanwise Fourier modes of the large-scale motions, a clearer picture of these structural organisations and coherence is presented. A targeted inspection of these dominant modes reveal that these features remain coherent over a significant fraction of the boundary layer thickness in the wall-normal direction, but only a fraction of them have coherence that extends to the wall (wall-coherent). Further, the spatial extents and the population density of these wall-coherent and wall-incoherent modes are characterised, with the former conforming to the attached eddy arguments of Townsend (1976) and the subsequent attached eddy models. Collectively, through the evidence gathered here, we provide a conceptual picture of the representative large-scale structures in turbulent boundary layers, which are likely to have implications on the type of representative structures to be used in structure-based models for these flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号