首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We developed a capillary electrophoresis (CE) apparatus equipped with a batch- or flow-type bioluminescence (BL) detection cell. Firefly luciferin-luciferase BL reaction was used to analyze samples of nucleotides, such as ATP, dATP, ADP, GTP, UTP, CTP, ITP, and TTP. In the CE apparatus with the batch-type cell, ATP was detected at concentrations of 5-100 microM, while the other nucleotides were not detected at concentrations less than 500 microM. The electropherogram of ATP included two BL peaks; the latter peak showed peculiar broadening, which continued up to ca. 2.5 h. In the CE apparatus with the flow-type cell, ATP, dATP, and ADP were detected with single peaks with detection limits of 1, 75, and 100 microM, respectively. The other nucleotides, GTP, UTP, CTP, ITP, and TTP, were not detected at concentrations less than 0.5 mM. A mixture of 10 microM ATP and 100 microM dATP was examined using the CE apparatus with the flow-type BL detection cell. ATP and dATP were separated using running buffer at pH 10 containing 1 mM phenylboronic acid. The interaction between ATP and phenylboronic acid delayed the migration time of ATP.  相似文献   

2.
Su R  Lin JM  Uchiyama K  Yamada M 《Talanta》2004,64(4):1024-1029
A glass electrophoresis microchip integrated a flow-type chemiluminescence (CL) detection cell has been developed and evaluated. The chip pattern is a double-T-type electrophoretic sample injection and separation combining with a Y-type chemiluminecent detector. The double-T geometry allows for high-efficiency sample injection and geometric definition of sample plug size. The branch of Y was used as CL reagent channel, and the CL reagent was delivered by a lab-made micropump. Bis[(2,4,6-trichlorophenyl)]oxalate-H2O2 CL system was employed to detect dansyl amino acids. On this microchip, dansyl-phenylalanine and -sarcosine were successfully separated by electrophoresis and detected within 250 s. The detection limits (S/N=3) of dansyl-phenylalanine and -sarcosine could reach to 2.8 and 3.2 μM, respectively, due to the vigorous dilution of sample with CL reagent and timely removal of the waste solution from reaction area.  相似文献   

3.
Chemiluminescence detection was used in capillary electrophoresis integrated on a microchip. Quartz microchips have two main channels and four reservoirs. Dansyl-lysine and -glycine were separated and detected with bis[(2-(3,6,9-trioxadecanyloxycarbony)-4-nitrophenyl]oxalate as peroxyoxalate chemiluminescent reagent. These dansyl amino acids came into contact with the chemiluminescence reagent to produce visible light at the interface between the separation channel and chemiluminescence reagent-containing reservoir. The detection limit (S/N = 3) for dansyl-lysine was 1 x 10(-5) M, which corresponded to the very small mass detection limit of ca. 0.4 fmol. However, the concentration sensitivity in the present system was approximately two orders of magnitude lower than that in the conventional capillary electrophoresis-chemiluminescence detection system. The relative standard deviations of migration time and peak height for dansyl-lysine were 4.2 and 4.5%, respectively. A channel conditioning before every run and an appropriate control of voltages were needed for the reproducible results. The present system had advantages in rapid separation time (within 40 s), small (several 10 pI) and accurate sample injection method using a cross-shaped injector, and simplification and miniaturization of the detection device.  相似文献   

4.
Purpose-made capillary electrophoresis set-ups for reaction kinetics monitoring featuring two automated injectors allowed the easy reduction of the needed reactant amount down to 500 microL. The first set-up is similar to the cross injector used frequently in lab-on-chip designs while the other uses falling droplets for sample/buffer delivery. The versatility of the system was demonstrated by the analysis of oxidation of C-vitamin by hydrogen peroxide. Pseudo first order reaction rates about 10(-3) s(-1) were measured with RSD = 1-3% in one experiment and RSD = 20% in interday/person experiment. Plate numbers were typically around 5000-20,000.  相似文献   

5.
6.
The present review presents the state of the art of the developments, key strategies and analytical applications of chemiluminescence detection coupled to CE (CE‐CL). Different parts considering the most common CL systems have been included, such as the tris(2,2′‐bipyridine)ruthenium(II) system, the luminol and derivatives reaction, the peroxyoxalate CL or direct oxidations. New advances in homemade configurations and applications in different fields such as clinical, pharmaceutical, environmental and food analysis have been included. The focus is on studies which appeared from 2000 to the end of 2009.  相似文献   

7.
On-capillary chemiluminescence detection for capillary electrophoresis with a single capillary was reported. A hole (about 30 microm diameter) was made on the capillary wall at about 50.5 cm from the inlet end. Hydrogen peroxide solution could enter the capillary from the hole, and mixed with luminol and copper(II) to produce chemiluminescence. The chemiluminescence was detected by a PMT under the hole. Several factors that influenced chemiluminescence intensity were investigated. The detection limits for luminol and N-(4-aminolbutyl)-N-ethylisoluminol (ABEI) were 1 x 10(-11) and 2 x 10(-10) mol L(-1), respectively. The method features simple construction and no dead volume.  相似文献   

8.
We have developed a compact polytetrafluoroethylene (PTFE) assembly-type capillary electrophoresis with chemiluminescence (CL) detection system. Luminol-microperoxidase-hydrogen peroxide chemiluminescence reaction was adopted. The device is rectangular in shape (60 mm x 40 mm x 30 mm) and includes three reservoirs (sample, migration buffer, and detection reservoirs) with electrodes. The detection reservoir includes an optical fiber to transport light at the capillary tip to a photomultiplier tube. Isoluminol isothiocyanate (ILITC) was analyzed as a model using this device with fused-silica or polytetrafluoroethylene capillary tubes 10 cm in length. We also used the sample reservoir as a reactor for an immune reaction between anti-human serum albumin immobilized on glass beads and isoluminol isothiocyanate-labeled human serum albumin. The present polytetrafluoroethylene assembly with the capillary tube was useful as a palm-sized analysis device for separation and detection, as well as a reactor.  相似文献   

9.
Application of parallel and serial dual electrode detectors for capillary electrophoresis was first described. In parallel dual electrode approach, two 100 μm-diameter Cu disks arranged side by side were used as the dual working electrode for the simultaneous determination of a mixture of carbohydrates and amino acids. In serial dual electrode approach, two working electrodes were arranged in a disk-ring manner for the simultaneous determination of both cysteine and cystine; the disk electrode was Hg/Au serving as the upstream electrode, the ring electrode was 5% CoPC carbon paste serving as the downstream electrode.  相似文献   

10.
毛细管电泳与化学发光检测联用方法的研究进展   总被引:1,自引:0,他引:1  
易方  黄香宜  任吉存 《色谱》2017,35(1):110-120
毛细管电泳由于其超高的分离效率广泛应用于生物医药、环境监测、食品科学以及公共安全等领域。然而,由于毛细管电泳具有进样量较少、检测光程较短等缺点,需要与高灵敏度检测器联用实现低浓度样品的分析。化学发光检测由于其背景信号低而具有超高的灵敏度。毛细管电泳-化学发光检测联用方法将毛细管电泳的高效分离特性与化学发光检测的高灵敏性相结合,成为一种非常重要的分析方法,广泛用于化学分析、药物筛选以及环境监测等领域。该文对近年来毛细管电泳-化学发光检测联用方法的基本原理进行概述,并对其发展趋势和应用前景进行了展望。  相似文献   

11.
Indirect detection of paracetamol was accomplished using a capillary electrophoresis-chemiluminescence (CE-CL) detection system, which was based on its inhibitory effect on a luminol-potassium hexacyanoferrate(III) (K3[Fe(CN)6]) CL reaction. Paracetamol migrated in the separation capillary, where it mixed with luminol included in the running buffer. The separation capillary outlet was inserted into the reaction capillary to reach the detection window. A four-way plexiglass joint held the separation capillary and the reaction capillary in place. K3[Fe(CN)6] solution was siphoned into a tee and flowed down to the detection window. CL was observed at the tip of the separation capillary outlet. The CL reaction of K3[Fe(CN)6] oxidized luminol was employed to provide the high and constant background. Since paracetamol inhibits the CL reaction, an inverted paracetamol peak can be detected, and the degree of CL suppression is proportional to the paracetamol concentration. Maximum CL signal was observed with an electrophoretic buffer of 30 mM sodium borate (pH 9.4) containing 0.5 mM luminol and an oxidizer solution of 0.8 mM K3[Fe(CN)6] in 100 mM NaOH solution. Under the optimal conditions, a linear range from 6.6 × 10−10 to 6.6 × 10−8 M (r = 0.9999), and a detection limit of 5.6 × 10−10 M (signal-to-noise ratio = 3) for paracetamol were achieved. The relative standard deviation (R.S.D.) of the peak area for 5.0 × 10−9 M of paracetamol (n = 11) was 2.9%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

12.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

13.
The present paper provides the principles for chemiluminescence of luminol-type compounds and their wide and powerful application to the detection system in liquid chromatography and capillary electrophoresis as derivatization reagents. The reagents can be classified into two types, chemiluminescence labeling and chemiluminogenic reagents. The former reagents are highly chemiluminescent themselves and used for tagging their intense chemiluminophores to analytes, whereas the latter are weakly chemiluminescent but generate intense chemiluminescence by reaction with analytes. The liquid chromatographic methods utilizing chemiluminescence derivatizing reactions with luminol-type reagents allow the analytes to be detected at pmol–sub-fmol levels. Furthermore, the chemiluminogenic reactions show high selectivity owing to their selective reaction against the analytes permitting facile and reproducible detection.  相似文献   

14.
A rapid and simple method is presented for the determination of folic acid (FA) by capillary electrophoresis (CE) with chemiluminescence (CL) detection. This method was based on enhance effect of FA on the CL reaction between luminol and BrO(-) in alkaline aqueous solution. Optimal separation and determination was obtained with an electrophoretic buffer of 35 mM sodium borate (pH 9.4) containing 0.8 mM luminol, and an oxidizer solution of 1.6 mM NaBrO in 100 mM NaCO(3) buffer solution (pH 12.0). Under the optimal conditions, the determination of FA was achieved in less than 20 min, and the detection limit was 2.0 x 10(-8) M (S/N=3). The relative standard deviations (RSDs) on peak area and migration time were in the 1.5 and 1.1%, respectively. The present CE-CL method was applied to the determination of FA in commercial pharmaceutical tablets, apple juices and human urine.  相似文献   

15.
Ji X  He Z  Ai X  Yang H  Xu C 《Talanta》2006,70(2):353-357
A competitive immunoassay for clenbuterol (CLB) based on capillary electrophoresis with chemiluminescence (CL) detection was established. The method was based on the competitive reaction of horseradish peroxidase (HRP)-labeled CLB (CLB-HRP) and free CLB with anti-CLB antiserum. The factors affecting the electrophoresis and CL detection were systematically investigated with HRP as a model sample. Under the optimal conditions, the tracer CLB-HRP and the immunoassay complex were separated, and the linear range and the detection limit (S/N = 3) for CLB were 5.0-40 nmol l−1 and 1.2 nmol l−1, respectively. The proposed method has been applied satisfactorily in the analysis of urine sample.  相似文献   

16.
毛细管电泳-化学发光法测定人血清中的异烟肼   总被引:2,自引:0,他引:2  
基于碱性介质中异烟肼对laminol-K3Fe(CN)6化学发光体系的增敏作用,设计了一个经毛细管电泳(CE)分离,在线化学发光检测异烟肼的新方法.研究并优化了毛细管电泳分离及化学发光检测的条件.在优化的实验条件下,该方法测定异烟肼的线性范围为4.0×10-7~1.0×10-5g/mL(R2=0.9984),检出限(3σ)为1×10-8g/mL,对6.0×10-6g/mL的异烟肼进行6次平行测定,其相对标准偏差为4.0%.方法已用于血清中异烟肼的测定.  相似文献   

17.
A methodology for multi-class pesticide determination at trace level in lanolin is presented. Gel permeation chromatography on a Bio-Beads SX-3 column followed by a dual GC chromatographic determination has been developed. The effluent of the analytical column (50% diphenyl–methyl- or 14% cyanopropyl–phenylpolysiloxane) was split into an electron-capture and a nitrogen–phosphorus detection system. The chromatographic system was optimised for 28 pesticides commonly used to control sheep pests and corresponding to organochlorine, organophosphorus and pyretroid classes. Identification has been carried out by gas chromatography coupled to negative chemical ionization mass spectrometry. Recoveries ranged from 72 to 94% and the detection limits from 20 to 97 ng/g depending on the pesticide class, the RSDs were below 10%. Finally, the developed analytical methodology has been successfully applied to the determination of pesticides in several lanolin samples.  相似文献   

18.
The first reported use of a carbon paste electrochemical detector for microchip capillary electrophoresis (CE) is described. Poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to a separate PDMS layer that contained carbon paste working electrodes. End-channel amperometric detection with a single electrode was used to detect amino acids derivatized with naphthalene dicarboxaldehyde. Two electrodes were placed in series for dual electrode detection. This approach was demonstrated for the detection of copper(II) peptide complexes. A major advantage of carbon paste is that catalysts can be easily incorporated into the electrode. Carbon paste that was chemically modified with cobalt phthalocyanine was used for the detection of thiols following a CE separation. These devices illustrate the potential for an easily constructed microchip CE system with a carbon-based detector that exhibits adjustable selectivity.  相似文献   

19.
A novel and simple method is presented for the determination of norfloxacin, ciprofloxacin, and ofloxacin by capillary electrophoresis with chemiluminescence detection. This method is based on the enhancing effect of quinolones on the chemiluminescence reaction of the Ce(SO4)2–Ru(bpy)32+–HNO3 system. Three quinolones were successfully separated and detected under optimum conditions. The obtained detection limits were 2.3×10–7 mol/L, 5.2×10–8 mol/L, and 7.8×10–8 mol/L for ciprofloxacin, norfloxacin, and ofloxacin, respectively. The RSD of migration time and peak area were less than 1.8 and 3.8% (n = 5), respectively. The applicability of the proposed method was illustrated in the determination of ofloxacin in eye drops and of norfloxacin in human urine samples, and the monitoring of pharmacokinetics for norfloxacin.  相似文献   

20.
Chen G 《Talanta》2007,74(3):326-332
As two important polymorphs of carbon, carbon nanotube (CNT) and diamond have been widely employed as electrode materials for electrochemical sensing. This review focuses on recent advances and the key strategies in the fabrication and application of electrochemical detectors in microchip and conventional capillary electrophoresis (CE) using CNT and boron-doped diamond. The subjects covered include CNT-based electrochemical detectors in microchip CE, CNT-based electrochemical detectors in conventional CE, boron-doped diamond electrochemical detectors in microchip CE, and boron-doped diamond electrochemical detectors in conventional CE. The attractive properties of CNT and boron-doped diamond make them very promising materials for the electrochemical detection in microchip and conventional CE systems and other microfluidic analysis systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号