首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found the asymptotic expansions of the series $$ \sum\limits_{k=0}^{\infty } {{{{\left( {-1} \right)}}^{{\beta k}}}Q\left( {\left( {{\delta^{\alpha }}-{{{\left( {ak+b} \right)}}^{\alpha }}} \right)+} \right)/{{{\left( {ak+b} \right)}}^{r+1 }}} $$ in powers of δ as δ → +∞, where β $ \mathbb{Z} $ , α, a, b > 0, r $ \mathbb{C} $ , and Q is an algebraic polynomial satisfying the condition Q(0) = 0. In particular cases, these series arise in the approximation of periodic differentiable functions by the Riesz means and the Cesáro means.  相似文献   

2.
For p∈(?∞, ∞) letQ p (?Δ) be the space of all complex-valued functions f on the unit circle ?Δ satisfying $\mathop {\sup }\limits_{I \subset \partial \Delta } \left| I \right|^{ - p} \int_I {\int_I {\frac{{\left| {f(z) - f(w)} \right|^2 }}{{\left| {z - w} \right|^{2 - p} }}\left| {dz} \right|\left| {dw} \right|< \infty } } $ , where the supremum is taken over all subarcs I ? ?Δ with the arclength |I|. In this paper, we consider some essential properties ofQ p (?Δ). We first show that if p>1, thenQ p (?Δ)=BMO(?Δ), the space of complex-valued functions with bounded mean oscillation on ?Δ. Second, we prove that a function belongs toQ p (?Δ) if and only if it is Möbius bounded in the Sobolev spaceL p 2 (?Δ). Finally, a characterization ofQ p (?Δ) is given via wavelets.  相似文献   

3.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

4.
Let Ω ? ? n , n ? 2, be a bounded connected domain of the class C 1,θ for some θ ∈ (0, 1]. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem $$\begin{gathered} u \in W^1 L^\Phi \left( \Omega \right), - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}} {{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u} {{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega , \hfill \\ \frac{{\partial u}} {{\partial n}} = 0 on \partial \Omega , \hfill \\ \end{gathered}$$ where Φ is a Young function such that the space W 1 L Φ(Ω) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V (x) is a continuous potential, h ∈ (L Φ(Ω))* is a nontrivial continuous function, µ ? 0 is a small parameter and n denotes the outward unit normal to ?Ω.  相似文献   

5.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

6.
Ω-theorems for some automorphic L-functions and, in particular, for the Rankin?Selberg L-function L(s, f × f) are considered. For example, as t tends to infinity, $$ \log \left| {L\left( {\frac{1}{2}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{1/2 }}} \right) $$ and $$ \log \left| {L\left( {{\sigma_0}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{{1-{\sigma_0}}}}} \right) $$ For a fixed σ 0 $ \left( {\frac{1}{2},1} \right) $ . Bibliography: 15 titles.  相似文献   

7.
Let P n denote the linear space of polynomials p(z:=Σ k=0 n a k (p)z k of degree ≦ n with complex coefficients and let |p|[?1,1]: = max x∈[?1,1]|p(x)| be the uniform norm of a polynomial p over the unit interval [?1, 1]. Let t n P n be the n th Chebyshev polynomial. The inequality $$ \frac{{\left| p \right|_{\left[ { - 1,1} \right]} }} {{\left| {a_n (p)} \right|}} \geqq \frac{{\left| {t_n } \right|_{\left[ { - 1,1} \right]} }} {{\left| {a_n (t_n )} \right|}},p \in P_n $$ due to P. L. Chebyshev can be considered as an extremal property of the Chebyshev polynomial t n in P n . The present note contains various extensions and improvements of the above inequality obtained by using complex analysis methods.  相似文献   

8.
We show that there do not exist computable functions f 1(e, i), f 2(e, i), g 1(e, i), g 2(e, i) such that for all e, iω, (1) $ {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (2) $ {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (3) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \oplus {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}; $ (4) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset};{\text{and}} $ (5) $ {\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset}. $ It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.  相似文献   

9.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

10.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

11.
Let $ \mathcal{T} $ be a positive random variable independent of a real-valued stochastic process $ \left\{ {X(t),t\geqslant 0} \right\} $ . In this paper, we investigate the asymptotic behavior of $ \mathrm{P}\left( {{\sup_{{t\in \left[ {0,\mathcal{T}} \right]}}}X(t)>u} \right) $ as u→∞ assuming that X is a strongly dependent stationary Gaussian process and $ \mathcal{T} $ has a regularly varying survival function at infinity with index λ ∈ [0, 1). Under asymptotic restrictions on the correlation function of the process, we show that $ \mathrm{P}\left( {{\sup_{{t\in \left[ {0,\mathcal{T}} \right]}}}X(t)>u} \right)={c^{\lambda }}\mathrm{P}\left( {\mathcal{T}>m(u)} \right)\left( {1+o(1)} \right) $ with some positive finite constant c and function m(·) defined in terms of the local behavior of the correlation function and the standard Gaussian distribution.  相似文献   

12.
The paper gives some solvability conditions of the Dirichlet problem for the second order elliptic equation $$ - div(A(x)\nabla u) + (\bar b(x),\nabla u) - div(\bar c(x)u) + d(x)u = f(x) - divF(x),x \in Q,u|_{\partial Q} = u_0 \in L_2 (\partial Q) $$ in bounded domain Q ? R n (n ≥ 2) with smooth boundary ?QC 1. In particular, it is proved that if the homogeneous problem has only the trivial solution, then for any u 0L 2(?Q) and f, F from the corresponding functional spaces the solution of the non-homogeneous problem exists, from Gushchin’s space $ C_{n - 1} (\bar Q) $ and the following inequality is true: $$ \begin{gathered} \left\| u \right\|_{C_{n - 1} (\bar Q)}^2 + \mathop \smallint \limits_Q r\left| {\nabla u} \right|^2 dx \leqslant \hfill \\ \leqslant C\left( {\left\| {u_0 } \right\|_{L_2 (\partial Q)}^2 + \mathop \smallint \limits_Q r^3 (1 + |\ln r|)^{3/2} f^2 dx + \mathop \smallint \limits_Q r(1 + |\ln r|)^{3/2} |F|^2 dx} \right) \hfill \\ \end{gathered} $$ where r(x) is the distance from a point xQ to the boundary ?Q and the constant C does not depend on u 0, f and F.  相似文献   

13.
Let Es=[0, 1]s be then-dimensional unit cube, 1<p<∞, anda=(a 1, ...,a s ) some set of natural numbers. Denote byL p (a) , (E s ) the class of functionsf: E s → C for which $$\left\| {\frac{{\partial ^{b_1 + \cdots + b_s } f}}{{\partial x_1^{b_1 } \cdots \partial x_s^{b_s } }}} \right\|_p \leqslant 1,$$ where $$0< b_1< a_1 , ..., 0< b_s< a_s .$$ Set $$R_p^{\left( a \right)} \left( N \right) = \mathop {\inf }\limits_{card \mathfrak{S} = N} R_\mathfrak{S} \left( {L_p^{\left( a \right)} \left( {E^s } \right)} \right),$$ where $R_\mathfrak{S} \left( {L_p^{\left( a \right)} \left( {E^s } \right)} \right)$ is the error of the quadrature formulas on the mesh $\mathfrak{S}$ (for the classL p (a) (E s )), consisting of N nodes and weights, and the infimum is taken with respect to all possibleN nodes and weights. In this paper, the two-sided estimate $$\frac{{\left( {\log N} \right)^{{{\left( {l - 1} \right)} \mathord{\left/ {\vphantom {{\left( {l - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} }}{{N^d }} \ll _{p, a} R^{\left( a \right)} \left( N \right) \ll _{p, a} \frac{{\left( {\log N} \right)^{{{\left( {l - 1} \right)} \mathord{\left/ {\vphantom {{\left( {l - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} }}{{N^d }}$$ is proved for every natural numberN > 1, whered=min{a 1, ...,a s }, whilel is the number of those components of a which coincide withd. An analogous result is proved for theL p -norm of the deviation of meshes.  相似文献   

14.
The preservation of stability under the convolution is shown to be related with the zero set of the Fourier transform of inducing stable function. For example, let φ be in the class Λ0 of all stable functions ψ such that $\widehat\psi \left( 0 \right) \ne 0{\text{ and }}\widehat\psi$ as well as $E_\psi : = \sum {\left| {\widehat\psi \left( {w + 2{\pi }k} \right)} \right|} ^2$ is continuous. Then Λ0 is preserved under the convolution by φ if and only if the zero set $Z\left( {\widehat\varphi } \right)$ is contained in 2πZ\{0}. The condition can be transformed into the zero set of the inducing mask trigonometric polynomial in the class Λ# of compactly supported refinable functions in Λ0. For example, our result shows that such φ must have its mask of the form $$m_\varphi \left( w \right) = \left( {\frac{{1 + {\text{e}}^{{\text{ - i2}}w} }}{2}} \right)^N \left( {\frac{{1 + {\text{e}}^{{\text{ - i}}w} + {\text{e}}^{{\text{ - i2}}w} }}{3}} \right)^M Q\left( w \right),$$ where integers N≥1 and M≥0, and Q(w) has no real zeros.  相似文献   

15.
Let Ω ? 0 be an open bounded domain in R N (N ≥ 3) and $2^* (s) = \tfrac{{2(N - s)}} {{N - 2}}$ , 0 < s < 2. We consider the following elliptic system of two equations in H 0 1 (Ω) × H 0 1 (Ω): $$- \Delta u - t\frac{u} {{\left| x \right|^2 }} = \frac{{2\alpha }} {{\alpha + \beta }}\frac{{\left| u \right|^{\alpha - 2} u\left| v \right|^\beta }} {{\left| x \right|^s }} + \lambda u, - \Delta v - t\frac{v} {{\left| x \right|^2 }} = \frac{{2\beta }} {{\alpha + \beta }}\frac{{\left| u \right|^\alpha \left| v \right|^{\beta - 2} v}} {{\left| x \right|^s }} + \mu v,$$ where λ, µ > 0 and α, β > 1 satisfy α + β = 2*(s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain-Pass theorem, we establish the existence of solutions.  相似文献   

16.
The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic mapping U of D into the open interval I = (?1, 1), $$\frac{{\Lambda _U (z)}} {{\cos \tfrac{{U(z)\pi }} {2}}} \leqslant \frac{4} {\pi }\frac{1} {{1 - \left| z \right|^2 }}$$ holds for z ∈ D, where Λ U (z) is the maximum dilation of U at z. The inequality is sharp for any zD and any value of U(z), and the equality occurs for some point in D if and only if $U(z) = \tfrac{4} {\pi }\operatorname{Re} \{ \arctan \phi (z)\}$ , zD, with a Möbius transformation φ of D onto itself.  相似文献   

17.
Let ? be a linear combination of certain box splines and \(\hat \phi \) its Fourier transform, such that \(\hat \phi \left( 0 \right) \ne 0\) and \(D^\beta \hat \phi \left( {2\pi k} \right) = 0\) for all κ∈ZN{0} and β≤α. In this paper we construct an expression of the multivariate polynomial (·-y)α in terms of a linear combination of the integer translates of ?(·), where the coefficients can be computed recursively using only the information on \(D^\beta \hat \phi \left( 0 \right)\) , β ≤ α. As an application, a quasi-interpolation scheme based only on function values on (scaled) integers κ∈ZN is constructed that gives a “multivariate order” of approximation that includes both coordinate and total orders.  相似文献   

18.
For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian Δ L , $$\beta \left( {\sqrt 2 \left\| x \right\|_H \frac{{\partial U(t,x)}} {{\partial t}}} \right)\frac{{\partial ^2 U(t,x)}} {{\partial t^2 }} + \alpha (U(t,x))\left[ {\frac{{\partial U(t,x)}} {{\partial t}}} \right]^2 = \Delta _L U(t,x),$$ we present algorithms for the solution of the boundary-value problem U(0, x) = u 0, U(t, 0) = u 1 and the exterior boundary-value problem U(0, x) = v 0, \(\left. {U(t,x)} \right|_{\Gamma = v_1 }\) , \(\lim _{\left\| x \right\|_{H \to \infty } } \left. {U(t,x) = v_2 } \right|\) for the class of Shilov functions depending on the parameter t.  相似文献   

19.
Let p, n ∈ ? with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ? × a? n which satisfies the interpolating conditions $I_{a}\left( j,am\right) =d_{j}\left( am\right) $ for j ∈ ?, m ∈ ? n where the functions d j : ? n → ? and the parameter a > 0 are given. Let $B_{s}\left( \mathbb{R}^{n}\right) $ be the set of all integrable functions f : ? n → ? such that the integral $$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$ is finite. The main result states that for given $\mathbb{\sigma}\geq0$ there exists a constant c>0 such that whenever $d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$ j ∈ ?, satisfy $\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) $ for all j ∈ ? there exists a polyspline S : ? n+1 → ? of order p on strips such that $$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$ for all y ∈ ? n , t ∈ ? and all 0 < a ≤ 1.  相似文献   

20.
Let {F t : t ≥ 0} be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) ? F t (x) exist for xK and t > 0, then D t F t (x) = (?1)F t ((?1)G(x)) for xK and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and $G(x) = \mathop {\lim }\limits_{s \to 0} {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} \mathord{\left/ {\vphantom {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} {\left( { - s} \right)}}} \right. \kern-0em} {\left( { - s} \right)}}$ for xK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号