首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以硝酸铁、硝酸镍以及柠檬酸为原料,采用凝胶-热分解法制备了N iFe2O4纳米粉末。利用X射线衍射确定了粉体的相结构、比表面积和晶格常数,扫描电子显微镜(SEM)观察了颗粒的形貌,振动样品磁强计(VSM)测量样品的磁性能。结果表明:所制备的样品均为尖晶石结构,颗粒粒径为36nm~68nm,且颗粒的粒径随着热处理温度的升高而增大,样品的比饱和磁化强度最大可达54.63 emu/g。同时,文章也对反应的动力学原理进行了研究,得出N iFe2O4纳米颗粒形成的活化能为15.8kJ/mol。  相似文献   

2.
Highly crystalline CoFe(2)O(4) nanoparticles with different diameters ranging from 2.4 to 6.1 nm have been synthesized by forced hydrolysis in polyol. The size can be controlled through adjusting the nominal water/metal molar ratio. X-ray diffraction, transmission electron microscopy, x-ray absorption spectroscopy and (57)Fe M?ssbauer spectrometry were employed to investigate the structure and the microstructure of the particles produced. Magnetic measurements performed on these particles show that they are superparamagnetic with a size-dependent blocking temperature. At 5 K, high saturation magnetization (~85 emu g(-1)) approaching that of the bulk was found for the larger particles, whereas a very large coercivity (14.5 kOe) is observed for the 3.5 nm sized particles.  相似文献   

3.
CoFe2O4纳米颗粒的结构、磁性以及离子迁移   总被引:1,自引:0,他引:1       下载免费PDF全文
聚乙烯醇(PVA)溶胶凝胶法制备出CoFe2O4纳米微粉,用X 射线衍射研究了铁氧体纳米颗粒的结构.测量了CoFe2O4纳米颗粒80-873 K的变温穆斯堡尔谱,发现纳米颗粒的磁转变温度范围为793-813 K,比块体材料的磁性转变温度要低.CoFe2O4纳米颗粒的德拜温度θA=674 K,θB=243 K,比块体材料要小.CoFe2O4纳米颗粒超精细场Hf随温度的变化符合T3/2+T5/2定理.当温度较高时,平均同质异能移IS随温度的升高而减小,并呈线性关系.  相似文献   

4.
低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性   总被引:2,自引:0,他引:2       下载免费PDF全文
采用低温固相反应法制备了晶粒尺寸在8-47 nm之间的NiFe2O4纳米颗粒系列样品,用X射线衍射仪(XRD)、高分辨中子粉末衍射谱仪、振动样品磁强计和超导量子干涉仪等对样品的晶体结构、宏观磁性和纳米颗粒的表面各向异性进行了分析研究.XRD和中子衍射测量结果显示纳米颗粒的晶格常数略高于块体材料,样品的氧参量表明纳米颗粒的晶格畸变程度没有块体材料严重.相对块体材料,纳米颗粒具有较小的磁化强度、较大的矫顽力和各向异性能密度.纳米颗粒从多畴转变为单畴的临界尺寸约为40 nm,超顺磁性临界尺寸约为16 nm.  相似文献   

5.
高若瑞  喻伟  费春龙  张悦  熊锐  石兢 《物理学报》2012,61(20):453-459
采用热分解法制备了分散程度高且平均晶粒尺寸为20 nm的CoFe2O4和MnFe2O4复合介质.低温磁化曲线测量显示,制备的复合介质具有软-硬磁交换弹性耦合效应,且合成温度以及软磁和硬磁相的成分比例对磁交换弹性耦合的强度有很大的影响.变温磁测量显示,温度为20K时,复合纳米介质的表面自旋冻结效应导致饱和磁化强度显著增加.Henkel测量显示,对分散的CoFe2O4和MnFe2O4复合介质,磁偶极相互作用占主导作用.  相似文献   

6.
Fe3O4@ZnO binary nanoparticles were synthesized by a simple two-step chemical method and characterized using various analytical instruments. TEM result proved the binary nanoparticles have core/shell structures and average particle size is 60 nm. Photocatalytic investigation of Fe3O4@ZnO core/shell nanoparticles was carried out using rhodamine B (RhB) solution under UV light. Fe3O4@ZnO core/shell nanoparticles showed enhanced photocatalytic performance in comparison with the as prepared ZnO nanoparticles. The enhanced photocatalytic activity for Fe3O4@ZnO might be resulting from the higher concentration of surface oxygen vacancies and the suppressing effect of the Fe3+ ions on the recombination of photoinduced electron–hole pairs. Magnetization saturation value (5.96 emu/g) of Fe3O4@ZnO core/shell nanoparticles is high enough to be magnetically removed by applying a magnetic field. The core/shell photocatalyst can be easily separated by using a commercial magnet and almost no decrease in photocatalytic efficiency was observed even after recycling six times.  相似文献   

7.
在氧化铝模板的纳米孔洞中, 用电化学的方法沉积铁镍合金纳米线,经过550℃30h氧化处理, 成功制备出 NiFe2O4纳米线阵列. 分别用扫描电子显微镜 (SEM) 、透射电子显微镜 (TEM) 、x射线衍射仪 (XRD) 和振动样品磁场计 (VSM) 对样品的形貌、晶体结构和磁学性质进行了表征测试. SEM和TEM观察结果显示氧化铝模板的孔洞分布均匀,孔心距约为110nm; 纳米线的直径约为70nm. XRD显示纳米线阵列的物相结构为NiFe2O4; VSM测试结果表明,NiFe2O4纳米线阵列膜的易磁化方向垂直于膜面. 当垂直磁化时磁滞回线的矩形比约为0.5,矫顽力为41×103A/m,比氧化处理前的铁镍合金纳米线阵列都有显著提高.  相似文献   

8.
This paper presents a method for fabricating size-selected nickel nanoparticles coated with oxide shells (shell thickness of about 2 nm). The size of the generated particles was controlled by a low-pressure differential mobility analyzer. The total mass of the deposited particles was estimated on the basis of their measured electric current. A high-resolution transmission electron microscope was used to observe the morphologies of the particles. We successfully synthesized a series of monodispersed (geometric standard deviation <1.2) core–shell particles with oxidized surface layers of 2 nm and analyzed their magnetic properties. PACS 75.50.Te; 75.30.Gw; 75.70.Cn  相似文献   

9.
10.
CoFe(2)O(4) nanoparticles (D(NPD) ~6 nm), prepared by a thermal decomposition technique, have been investigated through the combined use of dc magnetization measurements, neutron diffraction, and (57)Fe M?ssbauer spectrometry under high applied magnetic field. Despite the small particle size, the value of saturation magnetization at 300 K (M(s) ?= 70 A m(2) kg(-1)) and at 5 K (M(s) ?= 100 A m(2) kg(-1)) are rather close to the bulk values, making the samples prepared with this method attractive for biomedical applications. Neutron diffraction measurements indicate the typical ferrimagnetic structure of the ferrites, showing an inversion degree (γ(NPD) = 0.74) that is in very good agreement with cationic distribution established from low temperature (10 K) M?ssbauer measurements in high magnetic field (γ(moss) = 0.76). In addition, the in-field M?ssbauer spectrum shows the presence of a non-collinear spin structure in both A and B sublattices. The results allow us to explain the high value of saturation magnetization and provide a better insight into the complex interplay between cationic distribution and magnetic disorder in ferrimagnetic nanoparticles.  相似文献   

11.
A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range.  相似文献   

12.
采用化学共沉淀法,在空心微球上包覆一层CoFe2O4,得到一种低密度的空心磁性微球.磁测量结果表明,磁场下退火制备的CoFe2O4样品反位缺陷减少,从而导致饱和磁化强度随退火磁场的增强而增大.吸波性能测试结果表明,包覆结构的CoFe2O4/空心球样品是一种轻质的微波吸收材料.  相似文献   

13.
采用化学共沉淀法,在空心微球上包覆一层CoFe2O4,得到一种低密度的空心磁性微球.磁测量结果表明,磁场下退火制备的CoFe2O4样品反位缺陷减少,从而导致饱和磁化强度随退火磁场的增强而增大.吸波性能测试结果表明,包覆结构的CoFe2O4/空心球样品是一种轻质的微波吸收材料.  相似文献   

14.
Cobalt ferrite (CoFe2O4) nanoparticles embedded in amorphous silica can be synthesized by using tetraethylorthosilicate (TEOS) and metallic nitrates as precursors. A well-established silica matrix network provides nucleation locations for CoFe2O4 nanoparticles, thus confining their growth and aggregation. The structural and magnetic properties show strong dependence on the variation of particle size caused by annealing temperature and CoFe2O4 ratio, resulting in higher crystallization, saturation magnetization Ms and remanent magnetization Mr as the annealing temperature and CoFe2O4 ratio increase. But the variation of coercivity Hc is not in accordance with that of Ms and Mr, indicating that Hc is not determined by the size of CoFe2O4 nanoparticles only. The realization of the adjustable particle sizes and the controllable magnetic properties makes the applicability of CoFe2O4 even more versatile.  相似文献   

15.
The properties of heterophase core/shell/shell Ag/FeCo/Ag nanoparticles synthesized via a plasma method that are promising for biological applications are studied. As is established, the core/shell/shell Ag/FeCo/Ag nanoparticles exhibit a superparamagnetic state at room temperature that allows one to manage the hyperthermia process. The magnetic characteristics of core/shell/shell Ag/FeCo/Ag nanoparticles are interpreted by assuming partial oxidation of the surface layer of a ferromagnetic FeCo shell and formation of the antiferromagnetic CoxFe1–xО layer on the FeCo surface. The interaction between the surface antiferromagnetic CoxFe1–xО layer and the ferromagnetic FeCо shell causes the emergence of the exchange bias in Ag/FeCo/Ag nanoparticles.  相似文献   

16.
It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.  相似文献   

17.
In this study, the NiFe2O4 nanoparticles have been prepared by co-precipitation and calcination process. Using a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometer of X-ray (EDX), and X-ray photoelectron spectroscopy (XPS), the samples obtained by co-precipitation and then by further calcination have been analyzed. The experimental results show that the precursor synthesized by co-precipitation is the composite of both amorphous FeOOH and Ni(OH)2, but has no amorphous NiFe2O4. The results of both EDX and XPS revealed that the FeOOH species is wrapped up by Ni(OH)2 species. In the calcination process, the amorphous composite is dehydrated and transformed gradually into crystalline NiFe2O4 nanoparticles, with the metal ions diffusing. The reaction is different from the one used to prepare other ferrite (e.g., CoFe2O4, MnFe2O4, Fe3O4, etc.) nanoparticles directly by co-precipitation. With increasing calcination temperature, the NiFe2O4 grains grow and the magnetization is enhanced.  相似文献   

18.
A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range. Supported by the Jiangsu Postdoctoral Foundation of Jiangsu Province and the Major Project of National Basic Research Program of China (Grant No. 2005CB623605)  相似文献   

19.
Nanocrystalline CoFe2O4 powders were prepared by decomposition of metal ion citrate precursors. Four samples were synthesized from precursor solutions having different pH values in the range <1–7.0. The powders were characterized by X-ray Diffraction, Thermogravimetry, Differential Thermal Analysis, N2 physisorption and Transmission Electron Microscopy. Magnetic properties were explored by a SQUID magnetometer. Three out of the four samples, coming from solutions of pH 2, 4 and 7, were produced by an autocombustion reaction and are very similar as regards average size of the nanoparticles (about 20 nm), their morphology and the magnetic properties, while the fourth sample was produced by a slower thermal decomposition and is composed of smaller nanoparticles (about 10 nm).  相似文献   

20.
黄有林  侯育花  赵宇军  刘仲武  曾德长  马胜灿 《物理学报》2013,62(16):167502-167502
尖晶石型钴铁氧体(CoFe2O4)因具有良好的电磁性质, 广泛应用于计算机技术、航空航天及医学生物等领域. 特别是钴铁氧体薄膜在磁电复合材料中具有良好的应用前景. 本文基于密度泛函理论的第一性原理平面波赝势法, 结合广义梯度近似, 通过采用更接近于实验上外延生长的二维应变模型, 研究了钴铁氧体薄膜的结构稳定性、电子结构和磁性能. 结果表明: 在二维应变作用下, 反尖晶石结构的钴铁氧体比正尖晶石结构的稳定, 但是与平衡基态相比, 两者能量差减小, 这表明在应变作用下, 八面体晶格中的Co2+离子与四面体晶格中的Fe3+离子更容易进行位置交换, 形成混合型结构的钴铁氧体; 同时随着应变的增大, 钴铁氧体的能带带隙减小, 晶格中的原子磁矩发生变化, 但总磁矩变化不明显. 关键词: 尖晶石型钴铁氧体 第一性原理 电子结构 磁性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号