首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hetero and endothermic adaptive responses arising as a result of natural responses to environmental cues include antioxidant systems that support adaptations to environmental low temperatures in the broadest sense. These temperatures induce phase changes in energy production and consequently changes in the concentration of reactive oxygen species (ROS). The latter may lead to oxidative stress and the impairment of cellular homeostasis and antioxidant defence systems (ADS) scavenge the ROS so generated. In endotherms the ADS responds to oxidative pressure during acute cold stress conditions, this response is tissue specific and does not extend to prevent other oxidative damage. The early acute phase of cold exposure is accompanied by a significant depletion in redox equivalents. Under such conditions it is questionable if ADS has the capacity to neutralize elevated levels of ROS since there is also an increased energy demand and enhanced ATP consumption. Prolonged exposure to cold leads to ADS adaptation. Hibernators and freeze-tolerant species elevate their ADS before hibernation or freezing in order to prepare for and cope with re-awakening. The involvement of ROS and the role of the ADS in organisms subjected to low temperatures are features intercalated into physiological mechanisms of homestasis. The exact mechanisms for ADS regulation have not been fully defined and are the subject of many ongoing intriguing scientific investigations.  相似文献   

2.
3.
Since few data are availble on the genetic responses to low temperatures, we investigated if cold storage of hepatocytes (0 degree C, mUW or BGS solutions, 72 h) can affect gene expression and/or cellular localization of AQP8 and their correlation with water movements. Cold preserved hepatocytes showed a significant decrease in water content (P less than 0.05) but were able to regulate their volume when they returned to physiological conditions. These changes were not related to modulation in the expression and the pattern of distribution of AQP8 suggesting that other mechanisms are involved. The study of the quantitative changes in the expression of genes coding for liver specific proteins in cold preserved hepatic cells is of interest in order to develop new preservation methods or solutions that could contribute to maintain the utility of these cells when destined to be applied in clinical models.  相似文献   

4.
Abstract

In this work, a new class of thermodynamic-based higher order gradient plasticity theory is proposed and applied to the stretch-surface passivation problem for investigating the material behaviour under the non-proportional loading condition. This paper incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. The stored energy of cold work is considered in the development of the recoverable counterpart of the free energy. The main distinction in this formulation is the presence of the dissipative higher order microstress quantity that is known to give rise to the stress jump phenomenon, which causes a controversial dispute in the field of strain gradient plasticity theory with respect to whether it is physically acceptable or not. The finite element solution for the stretch-surface passivation problem is developed and validated by comparing with three sets of small-scale experiments. Based on the validated finite element solution, the stress jump phenomenon under the stretch-surface passivation condition is investigated with the effects of the various material parameters. The evolution of the free energy and dissipation potentials is investigated at elevated temperatures. The two-dimensional simulation is also given to examine the gradient and grain boundary effect, the mesh sensitivity of the two-dimensional model and the stress jump phenomenon. Finally, some significant conclusions are presented.  相似文献   

5.
Li NG 《Cryo letters》2012,33(2):135-143
Insects in Siberia must tolerate some of the coldest conditions on earth. The relationship between hemolymph ice nucleating activity, glycerol and total protein concentrations, and cold hardiness was explored in Aporia crataegi L. (Lepidoptera: Pieridae). Cold-hardened overwintering caterpillars were collected at a time of year when temperatures are regularly below -50 degree C, and warm-acclimated at +22 degree C, to see how changes in the physical and chemical properties of the hemolymph influence their cold hardiness potential. Warm acclimation led to a decrease in glycerol and proteins content in the hemolymph, which was associated with the decrease in ice nucleating activity and dramatic loss of cold hardiness potential of the caterpillars. It is suggested that one of the effects of cryoprotection in the freeze tolerant insects, caused by glycerol, might be associated with its ability to form larger aggregates of ice nucleating polypeptides that initiate the ice nucleation at high subzero temperatures. Such ice nucleating structures seem to ensure a high probability of ice nucleation at relatively high temperatures, which may contribute to the extraordinary cold hardiness of A. crataegi caterpillars, which may tolerate temperatures below -85 degree С.  相似文献   

6.
This article presents the response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress. Laboratory data from the literature, and new test data provided here, are used in the evaluation. The new data include uniaxial stress compression tests (at various strain rates and temperatures) and uniaxial stress tension tests (at low strain rates and ambient temperatures). The compression tests include experiments at ?ε= 13,000 s?1, significantly extending the range of known strain rate data. The observed behavior of PMMA includes the following: it is brittle in compression at high rates, and brittle in tension at all rates; strength is dependent on the pressure, strain, strain rate, temperature, and the intermediate principal stress; the shear modulus increases as the pressure increases; and it is highly compressible. Also presented are novel, high velocity impact tests (using high-speed imaging) that provide insight into the initiation and evolution of damage. Lastly, computational constitutive models for pressure, strength, and failure are presented that provide responses that are in good agreement with the laboratory data. The models are used to compute several ballistic impact events for which experimental data are available.  相似文献   

7.
Molecular dynamics method with the Stillinger-Weber (SW) potential has been employed to study the responses of GaN nanotubes (GaNNTs) to a uniaxial tensile load along the axial direction. It has been revealed that GaNNTs exhibits a completely different tensile behavior at different temperatures, i.e. ductility at higher deformation temperatures and brittleness at lower temperatures, leading to a brittle to ductile transition (BDT). Both the BDT temperature and the critical stress increases with increasing thickness of GaNNTs, and the critical stress at higher temperature are lower than those at lower temperature. These results on the tensile behaviors of GaNNTs in an atomic level will provide a good reference to its promising applications.  相似文献   

8.
Crystals of YBa2Cu3O7-δ (YBC) were prepared using a flux technique. The as-grown crystals were typically on the order of 200 μm × 200 μm × 50 μm, where the 50 μm dimension is in the c-direction. Ferroelastic behavior was observed by applying a uniaxial stress along the [100]tet-direction using a specially-designed fixture which was mounted to a programmable hot/cold stage of a polarizing reflected-light microscope. Domain wall motion was observed for temperatures greater than 200°C, and complete poling was accomplished at stresses on the order of 50–100 MPa at temperatures of 350–400°C. An ionic diffusion-activated mechanism is suggested.  相似文献   

9.
Sesamia nonagrioides Lefébvre (Lepidoptera: Noctuidae) is considered one of the most destructive pests of corn in the Mediterranean region. The purpose of the present study was to investigate some aspects of the cold tolerance of non-diapausing and diapausing laboratory reared larvae of S. nonagrioides, as well as of field-collected larvae, taking into consideration various parameters, such as supercooling ability, mean lethal temperature and accumulation of cryoprotectant substances, in relation to diapause. Our results provide evidence that S. nonagrioides has limited cold tolerance as it displays a low ability of supercooling. This is strongly supported by the fact that mortality of the individuals occurred after extended exposure to subzero temperatures, equivalent or slightly lower to their mean supercooling point. However, lethal temperatures of diapausing larvae were significantly lower in relation to that of non-diapausing larvae, indicating the existence of a direct link between diapause and cold tolerance. Regarding the role of cryoprotectant substances, accumulation of glycerol seems to be closely related to diapause, in contrast to accumulation of trehalose, which is more related to exposure to low temperatures slightly higher than 0 degree C. Finally, non-diapausing larvae of different instars displayed a similar ability of supercooling and tolerance to low temperatures as well as accumulation of cryoprotectant substances. The ecological significance of our findings on cold tolerance of this species is being discussed with particular reference to the microclimate observed in northern Greece.  相似文献   

10.
We examine how noise interacts with encoding mechanisms of neuronal stimulus in a cold receptor. From ISI series and bifurcation diagrams it is shown that there are considerable differences in interval distributions and impulse patterns caused by purely deterministic simulations and noisy simulations. The ISI-distance can be used as an effective and powerful way to measure the noise effects on spike trains of the cold receptor quantitatively. It is also found that spike trains observed in cold receptors can be more strongly affected by noise for low temperatures than for high temperatures in some aspects; meanwhile, the spike train has greater variability with increasing noise intensity.  相似文献   

11.
Detonation development from a hot spot has been extensively studied, where ignition occurs earlier than that in the surrounding mixtures. It has also been reported that a cool spot can induce detonation for large hydrocarbon fuels with Negative Temperature Coefficient (NTC) behavior, since ignition could happen earlier at lower temperatures. In this work we find that even for hydrogen/air mixtures without NTC behaviors, a cold wall can still initiate and promote detonation. End-wall reflection of the pressure wave and wall heat loss introduce an exothermic center outside the boundary layer, and then autoignitive reaction fronts on both sides may evolve into detonation waves. The right branch can be further strengthened by appropriate temperature gradient near the cold wall, and exhibits different dynamics at various initial conditions. The small excitation time and the large diffusivity of hydrogen provide the possibility for detonation development within the limited space between the autoignition kernel and the cold wall. Moreover, detonation may also develop near the flame front, which may or may not co-exist with detonation waves from the cold wall. Correspondingly, wall heat flux evolution exhibits different responses to detailed dynamic structures. Finally, we propose a regime diagram describing different combustion modes including normal flame, autoignition, and detonation from the wall and/or the reaction front. The boundary of normal flame regime qualitatively agrees with the prediction by the Livengood-Wu Integral method, while the detonation development from both the end wall and the reaction front observes Zel'dovich mechanism. Compared to hydrocarbons, hydrogen is resistant to knock onset but it is more prone to superknock development. The latter mode becomes more destructive in the presence of wall heat loss. This study isolates and identifies the role of wall heat loss on a potential mechanism for superknock development in hydrogen-fueled spark-ignition engines.  相似文献   

12.
Various thermotherapies are based on the induction of lethal heat in target tissues. Spatial and temporal instabilities of elevated temperatures induced in therapy targets require optimized treatment protocols and reliable temperature control methods during thermotherapies. Heat-stress induced effects on mitochondrial transmembrane potentials were analyzed in breast cancer cells, species MX1, using the potential sensor JC-1 (Molecular Probes, Invitrogen, Germany). Potential dependant labeling of heat-stressed cells was imaged and evaluated by fluorescence microscopy and compared with control cells. JC-1 stains mitochondria in cells with high mitochondrial potentials by forming orange-red fluorescent J-aggregates while in cells with depolarized or damaged mitochondria the sensor dye exists as green fluorescent monomers. In MX1 cells orange-red and green fluorescence intensities were correlated with each other after various heat-stress treatments and states of mitochondrial membrane potentials were deduced from the image data. With increasing stress temperatures the intensity of red fluorescent J-aggregates decreased while the green fluorescence intensity of JC-1 monomers increased. This heat-stress response happened in a nonlinear manner with increasing temperatures resulting in a nonlinear increase of red/green fluorescence ratios. These data indicated that mitochondria in MX1 cells were increasingly depolarized in response to increasing ambient temperatures.  相似文献   

13.
14.
ABSTRACT

Cells of Listeria monocytogenes suspended in phosphate-buffered saline (PBS) were treated by high hydrostatic pressure (HHP; 500?MPa, 25°C, 10?min), diluted by ten folds using trypticase soy broth (TSB) or PBS, and stored at cold temperatures of 0–15°C. Viable cell count in TSB increased logarithmically close to the initial count at each storage temperature, while that in PBS increased temporarily and subsequently decreased to almost nondetectable level except the case at 15°C, where it showed logarithmic increase thereafter. Based on proliferation experiments where their healthy cells were inoculated to TSB or to PBS containing their heat-killed dead cells, it was suggested that increase in the viable count of HHP-treated cells in TSB and PBS could be ascribed to the recovery of colony forming ability and/or proliferation depending on the cold storage temperature.  相似文献   

15.
Many freezing-intolerant insects may die during long or even brief exposures to temperatures above their supercooling point (SCP). Consequently, the real ecological value of the SCP remains ambiguous, particularly for tropical species that never experienced cold exposures. The bimodal distribution of SCP is discussed in the light of sexual dimorphism. The importance of sex in insect cold hardiness has been regularly neglected and although we admit that in some species sex may be uneasy to determine, it should be taken into account in further studies. We suggest that supercooling ability may be, at least partially, a result of adaptations to other functions unrelated to cold, including the desiccation resistance. The potential causes of insect death at low temperatures during survival experiments have also been examined. Prolonged exposures at lethal low temperatures can produce deleterious effects (including death) even if the insect does not freeze; during long-term exposure to low temperatures the organisms may finally die from the exhaustion of energy reserves.  相似文献   

16.
Nedved O 《Cryo letters》2000,21(1):25-30
The tropical beetle Stenotarsus rotundus (Endomychidae) survived chilling at mildly low temperatures (above +5 degree C). With upper limit of cold injury zone (ULCIZ, the highest temperature that causes cold injury) well above freezing point, the supercooling ability (mean supercooling point - SCP; -11 degree C) has no cryoprotective importance. Mortality increases rapidly between -9 and +5 degree C, dependent on accumulated dose of chilling (sum of injurious temperatures - SIT; 2 degree-days below ULCIZ). The cold hardiness traits found in this species are by-products of deep diapause, and may serve as pre-adaptation for expansion into cooler regions.  相似文献   

17.
Ruiz A  Nagy PB 《Ultrasonics》2004,42(1-9):665-669
Surface acoustic wave (SAW) velocity spectroscopy has been long considered to be one of the leading candidates for nondestructive characterization of surface-treated metals because of its ability to probe the material properties at different penetration depths depending on the inspection frequency. We developed a high-precision laser-ultrasonic technique to study the feasibility of SAW dispersion spectroscopy for residual stress assessment on shot-peened metals. This technique is capable of measuring SAW dispersion with a relative error of 0.1% over a frequency range from 2 to 15 MHz. Our experimental results obtained from shot-peened aluminum 2024-T351 samples indicate that the dispersion of the surface wave is a superposition of different effects of surface treatment in the material, including surface roughness, compressive residual stress, and cold work. Although the surface roughness induced component is often the dominating part of the overall dispersion, the experimental results also indicate that it is feasible to observe a perceivable change in the dispersion of the SAW when the specimen is heat-treated at different temperatures, which has no perceivable effect on the surface roughness. The part of the dispersion, which changes during annealing via thermal relaxation, is due to near-surface residual stresses and the decay of texture, although at high frequencies nonuniform grain coarsening could also play a significant role.  相似文献   

18.
The electromagnetic propagation in a relativistic electron gas at finite temperatures and carrier densities is described. Using quantum electrodynamics at finite temperatures, electric and magnetic responses and general constitutive relations are obtained. Rewriting the propagator for the electromagnetic field in terms of the electric and magnetic responses, the modes that propagate in the gas are identified. As expected, the usual collective excitations are obtained, i.e., a longitudinal electric and two transverse magnetic plasmonic modes. In addition, a purely photonic mode is found, which satisfies the wave equation in vacuum, for which the electron gas is transparent. Dispersion relations for the plasmon modes at zero and finite temperatures are presented and the intervals of frequency and wavelength where both electric and magnetic responses are simultaneously negative are identified, a behavior previously thought not to occur in natural systems. The investigation of the electromagnetic responses of a relativistic electron gas shows that, apart from the usual longitudinal electric plasmon mode and the two transverse magnetic plasmon modes, there is also a pure photonic mode that propagates with the speed of light, as if the medium were transparent. Furthermore, there is a region of frequencies and wavenumbers of the external fields where both the longitudinal electric permittivity and magnetic permeability are simultaneously negative, a property found in artificially constructed metamaterials.  相似文献   

19.
The effects of severe plastic deformation on the thermal activation of dislocation gliding in ultralow-carbon steel at low temperatures were investigated. This was done by measuring the temperature dependences of the effective stress, activation volume and activation energy. It was found that the values of all these parameters were lower than those for coarse-grained specimens at low temperatures. In coarse-grained materials, the activation energy should increase with a decrease in the effective stress. This phenomenon, which seemed counterintuitive initially, could be physically interpreted on the basis of the fluctuation in the athermal stress.  相似文献   

20.
Measurements of the atmospheric thermal emission using an infrared Fourier transform spectrometer need to be radiometrically calibrated. As for several existing instruments (IASI-MetOp, IASI-balloon, NAST-I, AERI, etc.), the two points radiometric calibration is generally performed using two well-characterized blackbodies at two different temperatures (or one blackbody and the cold space), which allow to determine the response and the self-emission of the instrument. To perform an accurate radiometric calibration, the emissivity and the temperature of each blackbody should be known accurately. The blackbody temperatures are chosen to fit the characteristics of the instrument. The measurement of these temperatures is essential. This paper proposes a method to perform an accurate radiometric calibration even when one of the two blackbodies temperatures is not perfectly measured, by numerically retrieving this erroneous temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号