首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mo X  Ferguson E  Hwu SJ 《Inorganic chemistry》2005,44(9):3121-3126
A new family of salt-containing, mixed-metal silicates (CU-14), Ba6Mn4Si12O34Cl3 (1) and Ba6Fe5Si11O34Cl3 (2), was synthesized via the BaCl2 salt-inclusion reaction. These compounds crystallize in the noncentrosymmetric (NCS) space group Pmc2(1) (No. 26), adopting 1 of the 10 NCS polar, nonchiral crystal classes, mm2 (C2v). The cell dimensions are a = 6.821(1) A, b = 9.620(2) A, c = 13.172(3) A, and V = 864.4(3) A3 for 1 and a = 6.878(1) A, b = 9.664(2) A, c = 13.098(3) A, and V = 870.6(3) A3 for 2. The structures form a composite framework made of the (M(4+x)Si(12-x)O34)9- (M = Mn, x = 0; M = Fe, x = 1) covalent oxide and (Ba6Cl3)9+ ionic chloride sublattices. The covalent framework exhibits a pseudo-one-dimensional channel where the extended barium chloride lattice (Ba3Cl1.5)(infinity) resides, and it consists of fused eight-membered meta-silicate rings propagating along [100] via sharing two opposite [Si2O7]6- units to form an acentric lattice. Single-crystal structure studies also reveal the ClBa4 unit adopting an interesting seesaw configuration, in which the lone pair electrons of chlorine preferentially face the oxide anions of the transition metal silicate channel, thus forming the observed polar frameworks. Similar to the synthesis of organic-inorganic hybrid materials, the salt-inclusion method facilitates a promising approach for the directed synthesis of special framework solids, including NCS compounds, via composite lattices.  相似文献   

2.
The isotypic title compounds Ba4Pr7[Si12N23O][BN3], Ba4Nd7[Si12N23O][BN3], and Ba4Sm7[Si12N23O][BN3] were prepared by reaction of Pr, Nd, or Sm, with barium, BaCO3, Si(NH)2, and poly(boron amide imide) in nitrogen atmosphere in tungsten crucibles using a radiofrequency furnace at temperatures up to 1650 C. They were obtained as main products (approximately 70%) embedded in a very hard glass matrix in the form of intense dark green (Pr), orange-brown (Sm), or dark red (Nd) large single crystals, respectively. The stoichiometric composition of Ba4Sm7[Si12N23O][BN3] was verified by a quantitative elemental analysis. According to the single-crystal X-ray structure determinations (Ba4Ln7[Si12N23][BN3], Z= , P6 with Ln = Pr: a = 1225.7(1), c = 544.83(9) pm, R1 = 0.013, wR2 = 0.030; Ln = Nd: a = 1222.6(1), c = 544.6(1) pm, R1 = 0.017, wR2 = .039; Ln = Sm: a = 1215.97(5), c = 542.80(5) pm, R1 = 0.047, wR2 = 0.099) all three compounds are built up by a framework structure [Si12N23O]23- of corner-sharing SiX4 tetrahedrons (X = O, N). The oxygen atoms are randomly distributed over the X positions. The trigonal-planar orthonitridoborate ions [BN3]6- and also the Ln(3)3+ are situated in hexagonal cages of the framework (bond lengths Si-(N/O) 169-179 pm for Ln=Pr). The remaining Ba2+ and Ln3- ions are positioned in channels of the large-pored network. The trigonal-planar [BN3]6- ions have a B-N distance of 147.1(6) pm (for Ln = Pr). Temperature-dependent susceptibility measurements for Ba4Nd7[Si12N23O][BN3] revealed Curie-Weiss behavior above 60 K with an experimental magnetic moment of muexp = 3.36(5) microB/Nd. The deviation from Curie-Weiss behavior below 60 K may be attributed to crystal field splitting of the J = 9/2 ground state of the Nd3+ ions. No magnetic ordering is evident down to 4.2 K.  相似文献   

3.
1INTRODUCTIONTheuniqueelectronicpropertiesofcopperoxidesandoxyhalideshaveattractedmuchattentionduetotheirpotentialapplicationsassupercon-ductors,catalysts,luminescentmaterialsandp-typetransparentconductors[1].Inanefforttoexplorenewframeworkstructuresofmixed-metaloxyha-lidessuchasCuAgOCl,wehaveobtainedanewpolymorphofthebariumdicopperdisilicate,b-Ba2CuSi2O7.Inthispaper,wewillreportthesolid-statesynthesisandcrystalstructureofthisnewphaseanddiscussthedifferencesbetweenthestructuresofb-Ba2C…  相似文献   

4.
Initial attempts to prepare new Ln-Cd-Te-O-Cl compounds led to the isolation of two novel cadmium tellurium(IV) oxychlorides with two different types of structures, namely, [Cd(2)(Te(6)O(13))][Cd(2)Cl(6)] and Cd(7)Cl(8)(Te(7)O(17)). Both compounds feature novel polymeric tellurium(IV) oxide anions and unusual cadmium chloride substructures. The structure of [Cd(2)(Te(6)O(13))][Cd(2)Cl(6)] is composed of 1D [Cd(2)Cl(6)](2)(-) double chains and (002) [Cd(2)(Te(6)O(13))](2+) layers. The 1D Te(6)O(13)(2)(-) slab of the [Cd(2)(Te(6)O(13))](2+) layer is formed by TeO(3), TeO(4), and TeO(5) groups via corner- and edge-sharing, and it contains six- and seven-membered tellurium(IV) polyhedral rings. The structure of Cd(7)Cl(8)(Te(7)O(17)) features a 3D network with long-narrow tunnels along the b axis. The two types of structural building blocks are 1D [Te(7)O(17)](6)(-) anions and unusual corrugated [Cd(7)Cl(8)](6+) layers based on "cyclohexane-like" Cd(3)Cl(3) rings.  相似文献   

5.
Dibarium μ‐oxido‐bis[pentachloridoruthenate(IV)] decahydrate, Ba2Ru2Cl10O·10H2O, has been prepared from ruthenium(III) chloride and barium chloride in hydrochloric acid. It crystallizes in the monoclinic system (space group C2/c). The structure consists of alternating layers of [Ru2Cl10O]4− and [Ba(H2O)7]2+ complex ions along the a direction. The O atom bonded to ruthenium occupies the 4e site, with symmetry, while the other atoms occupy general 8f sites. The overall structure is held together by O—H...O hydrogen bonds and O—H...Cl dipole–dipole interactions.  相似文献   

6.
Li RK  Yu Y 《Inorganic chemistry》2006,45(17):6840-6843
The title compound, Ba4Ga2B8O18Cl2.NaCl, is found to crystallize in a polar space group P4(2)nm with cell dimensions of a = 12.1134(2) A and c = 6.8456(1) A. The basic building blocks of the structure are the B4O9 groups, which are interconnected by the GaO4 tetrahedron to form a three-dimensional net with Ba2+ ion-, Cl- ion-, and NaCl molecule-filled tunnels. This net structure is closely related to that of mineral hilgardite, with which many variant compounds have been found. Both a powder second-harmonic-generation test and calculations suggest that it possesses an optical nonlinearity comparable to that of potassium dihydrogen phosphate.  相似文献   

7.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

8.
Single crystals of three new noncentrosymmetric (NCS) phosphates, α (1) and β (2) forms of Cs(3)KBi(2)Mn(4)(PO(4))(6)Cl and α-Cs(3)KBi(2)Fe(4)(PO(4))(6)Cl (3), were grown in a reactive CsCl/KCl molten-salt media. Their structures were determined by single-crystal X-ray diffraction methods showing that the α form crystallizes in the space group Cc (No. 9), which is in one of the 10 NCS polar crystal classes, m (2/m) while the β form crystallizes in P4(3) (No. 78) of another polar class, 4 (4/m). The unit cell parameters of the α form can be approximately correlated with that of the β form via the 3 × 3 orientation matrix [0.5, 0.5, 0; -0.5, 0.5, 0; 0, 0, 2 sin β]. The structures of these otherwise complicated phosphates exhibit two types of channels with circular and elliptical windows where the Cl-centered Cl(Bi(2)Cs) acentric unit is located. The neighboring acentric units are arranged in a parallel fashion in the α form, resulting in the monoclinic (Cc) lattice, but "antiparallel" in the β form, thus giving the tetragonal (P4(3)) unit cell. 1-3 feature the compatible M-O-P unit that contains four crystallographically independent MO(x) (x = 4, 5) polyhedra, which are connected to the Cl(Bi(2)Cs) acentric unit through one short and one long M(II)···Cl bond. The compositions of 1 and 2 consist of three Mn(2+) (d(5)) and one Mn(3+) (d(4)) per formula unit and that of 3 has three Fe(2+) (d(6)) and one Fe(3+) (d(5)). Bond valence sums reveal that, in the α phase, the trivalent site adopts distorted tetrahedral M(1)(3+)O(4) coordination and, in the β phase, distorted trigonal-bipyramidal M(4)(3+)O(5). Thus far, the iron phase has only been isolated in the α form presumably because of little extra stabilization energy gain if the Fe(2+) d(6) ion were to occupy the M(1)O(4) site. The possible origins pertaining to the structural differences in the α and β forms are discussed.  相似文献   

9.
Koo HJ  Lee KS  Whangbo MH 《Inorganic chemistry》2006,45(26):10743-10749
The spin exchange interactions of the magnetic oxides Ba3Cr2O8, Ba3Mn2O8, Na4FeO4, and Ba2CoO4 with a three-dimensional network of isolated MO4 (M = Cr, Mn, Fe, Co) tetrahedra were examined by performing spin dimer analysis on the basis of tight-binding electronic structure calculations. Although the shortest O...O distances between adjacent MO4 tetrahedra are longer than the van der Waals distance, our analysis shows that the super-superexchange interactions between adjacent MO4 tetrahedra are substantial and determine the magnetic structures of these oxides. In agreement with experiment, our analysis predicts a weakly interacting isolated AFM dimer model for both Ba3Cr2O8 and Ba3Mn2O8, the (0.0, 0.5, 0.0) magnetic superstructure for Na4FeO4, the (0.5, 0.0, 0.5) magnetic superstructure for Ba2CoO4, and the presence of magnetic frustration in Ba2CoO4. The comparison of the intra- and interdimer spin exchange interactions of Ba3Cr2O8 and Ba3Mn2O8 indicates that orbital ordering should be present in Ba3Cr2O8.  相似文献   

10.
本文取配合物晶体[Mn(H_2O)_4(NCS)_2]·(18-C-6)的一个分子片断进行CNDO/2半经验分子轨道理论计算,给出Mulliken键级、电荷分布和电子态密度等,探讨了其成键特性。结果表明,过渡金属配合单元[Mn(H_2O)_4(NCS)_2]与18-C-6冠醚环之间的主要结合方式是定域化程度相当高的氢键,与来自实验测量的推测相一致。  相似文献   

11.
Zhang JH  Kong F  Mao JG 《Inorganic chemistry》2011,50(7):3037-3043
Two new barium borogermanates with two types of novel structures, namely, Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) and Ba(3)Ge(2)B(6)O(16), have been synthesized by hydrothermal or high-temperature solid-state reactions. They represent the first examples of alkaline-earth borogermanates. Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) crystallized in a polar space group Cc. Its structure features a novel three-dimensional anionic framework composed of [B(7)O(16)(OH)(2)](13-) polyanions that are bridged by Ge atoms with one-dimensional (1D) 10-membered-ring (MR) tunnels along the b axis. The Ba(II) cations, hydroxide ions, and water molecules are located at the above tunnels. Ba(3)Ge(2)B(6)O(16) crystallizes in centrosymmetric space group P1. Its structure exhibits a thick layer composed of circular B(6)O(16) units connected by GeO(4) tetrahedra via corner sharing, forming 1D 4- and 6-MR tunnels along the c axis. Ba1 ions reside in the tunnels of the 6-MRs, whereas Ba2 ions are located at the interlayer space. Both compounds feature new types of topological structures. Second-harmonic-generation (SHG) measurements indicate that Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) displays a weak SHG response of about 0.3 times that of KH(2)PO(4). Optical, thermal stability, and ferroelectric properties as well as theoretical calculations have also been performed.  相似文献   

12.
The syntheses, structures, and magnetic properties of two new Mn7 complexes containing phenylseleninate ligands are reported. [Mn7O8(O2SePh)8(O2CMe)(H2O)] (1) and [Mn7O8(O2SePh)9(H2O)] (2) were both prepared by the reaction of 18 equiv of benzeneseleninic acid (PhSeO2H) with [Mn12O12(O2CMe)16(H2O)4] in MeCN. Complex 1 x 6MeCN crystallizes in the triclinic space group P, and complex 2 x 2CH2Cl2 crystallizes in the monoclinic space group P2(1)/m. Both compounds possess an unprecedented [Mn7O8]9+ core comprising a central [MnIII3(micro3-O)4]+ unit attached to [MnIV2(micro-O)2]4+ and [MnIV2(micro-O)(micro3-O)]4+ units on either side. In each cluster, the PhSeO2- groups function as bridging ligands between adjacent Mn centers. The structure reveals strong Se.O intermolecular contacts between Mn7 units to give a one-dimensional chain structure, with weak interchain interactions. Solid-state DC magnetic susceptibility measurements of complexes 1 and 2 reveal that they have very similar properties, and detailed studies on 1 by AC susceptibility measurements confirm an S = 2 ground-state spin value. In addition, out-of-phase AC signals are observed, suggesting slow magnetization relaxation. Magnetization versus DC field sweeps down to 0.04 K reveals hysteresis loops, but the temperature dependence of the coercivity is not what is expected of a single-molecule magnet. Instead, the behavior is due to single-chain magnetism, albeit with weak antiferromagnetic interactions between the chains, with the barrier to relaxation arising from a combination of molecular anisotropy and ferromagnetic intermolecular exchange interactions mediated by the Se...O contacts. An Arrhenius plot was constructed from the magnetization versus time decay data. The thermally activated region at > 0.5 K gave an effective relaxation barrier (Ueff) of 14.2 K. Below approximately 0.1 K, the relaxation is independent of temperature, which is characteristic of magnetization quantum tunneling through the anisotropy barrier. These Mn7 compounds are thus the first single-chain magnets to comprise polynuclear metal clusters and also the first for which the temperature-independent relaxation characteristic of tunneling has been identified. The work also emphasizes that out-of-phase AC signals for ostensibly molecular compounds are not sufficient proof by themselves of a single-molecule magnet.  相似文献   

13.
The synthesis, X-ray data, and electronic structures of two manganese(III) 1D polymers ligated by tetrachlorocatechol, [Mn(2)(III)(H(2)L(1))(Cl(4)Cat)(4).2H(2)O](infinity) (1) and [Mn(2)(III)(H(2)L(2))(Cl(4)Cat)(4).2CH(3)CN.2H(2)O](infinity) (2), are reported. The electronic structures of the complexes have been determined by UV-vis-near-IR, IR, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements. Both 1 and 2 are air stable in the solid state and in solution, unlike most of the previously reported o-quinone-chelated transition-metal complexes. Electronic spectroscopy exhibits a strong near-IR band near 1900 nm for both, suggesting the presence of a mixed-valence semiquinone-catecholate oxidation state of the catechol ligands, Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2), together with the pure catecholate forms. The presence of this isomer was further supported by EPR and magnetic susceptibility measurements. The complexes undergo intramolecular electron transfer (valence tautomerism) upon an increase of the temperature involving the equilibrium Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2) <==> Mn(2)(II)(Cl(4)SQ)(4). This phenomenon is reversible and is studied in solution using UV-vis-near-IR spectroscopy.  相似文献   

14.
The optical properties of Eu-activated (Ba,Sr)(13-x)Al(22-2x)Si(10+2x)O66 materials have been determined after the structural reinvestigation of the hypothetical Ba 13Al 22Si 10O 66 material on the basis of the Gebert's model. The white fluorescence and phosphorescence of the (Ba,Sr)(13-x)Al(22-2x)Si(10+2x)O66:Eu series result from the existence of two broad emission bands associated with (8)H-4f(6)5d(1)-->(8)S-4f(7) transitions peaking at 534 and 438 nm, the intensities of which may be tuned at room temperature via the control of the europium concentration and the substitution of Sr for Ba. This suggests the possibility to adjust the emission of the material to white LED requisites.  相似文献   

15.
Detailed studies are reported of a Mn(12) single-molecule magnet (SMM) in truly axial (tetragonal) symmetry. The complex is [Mn(12)O(12)(O(2)CCH(2)Br)(16)(H(2)O)(4)].4CH(2)Cl(2) (2.4CH(2)Cl(2) or Mn(12)-BrAc), obtained by the standard carboxylate substitution method. The complex has an S = 10 ground state, typical of the Mn(12) family, and displays frequency-dependent out-of-phase AC susceptibility signals and hysteresis in single-crystal magnetization vs applied DC field sweeps. Single-crystal high-frequency EPR spectra in frequencies up to 360 GHz exhibit narrow signals that are not overlapping multiplets, in contrast to [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1 or Mn(12)-Ac), which also crystallizes in an axial (tetragonal) space group but which now is recognized to consist of a mixture of six hydrogen-bonded isomers in the crystal and thus gives multiple, inhomogeneously broadened EPR signals. Similarly, single-crystal (55)Mn NMR spectra on Mn(12)-BrAc display much sharper signals than a single crystal of Mn(12)-Ac, and this allows one Mn(III) signal to show an almost baseline-resolved quintet from quadrupolar splitting ((55)Mn, I = 5/2, 100%), allowing quadrupole coupling parameters (e(2)qQ) to be determined. In addition, it was found that crushing crystals of Mn(12)-BrAc into a microcrystalline powder causes severe broadening and shifts of the NMR resonances, emphasizing the superiority of single-crystal studies. The combined results establish that Mn(12)-BrAc is far superior to Mn(12)-Ac for the study of the intrinsic properties of the Mn(12) family of SMMs in axial symmetry, and for the search for new phenomena such as quantum interference effects caused by higher-order (>2nd-order) transverse terms in the spin Hamiltonian.  相似文献   

16.
The synthesis, single crystal structure determination, and electronic structure of Nb10Cl16O7, the first Nb6 oxychloride stabilized without countercation, are reported in this work. The crystal structure is very original since it consists of layers built up from both Nb6 octahedral clusters and Nb2 pairs. The Nb6Oi6Cli6Cla6 and Nb2(mu2-Cl)2Cl4O4 units form [Nb6Cli6Oi4O(i-i)(2/2)Cl(a-a)(4/2)Cla2]infinity infinite chains and [(Nb2(mu2-Cl)2O(2/2)Cl(4/2)O2)2]infinity double chains, respectively, that are interconnected by shared oxygen and chlorine ligands leading to layers. The cohesion of the three-dimensional structure (3D) is ensured by van der Waals contacts between layers that are randomly stacked along the [011] direction. Structural correlations between Nb10Cl16O7 and related Nb6 cluster oxyhalides, as well as NbOCl2 and NbCl4 containing Nb2 pairs, are discussed. DFT results show that among the 20 valence electrons involved in the metal-metal bonding states, 14 electrons belong to the octahedral Nb6Cli6Oi6Cla6 unit whereas the 6 others (i.e., 1.5 per Nb atom) participate in the bonding in the distorted [(Nb2(mu2-Cl)2O(2/2)Cl(4/2)O2)2]infinity double chains.  相似文献   

17.
Ba7Mn5Cr2O2O20 adopts a structure containing an ordered array of Mn(IV), Mn(II) and Cr(V) cations and exhibits complex magnetic behaviour at low temperature.  相似文献   

18.
The new niobium oxychloride cluster compound, Cs2Ti4Nb6Cl18O6, was obtained by solid-state synthesis techniques in the course of our systematic investigation of metal oxychloride systems aimed at the preparation of low-dimensional cluster compounds. Cs2Ti4Nb6Cl18O6 crystallizes in the trigonal system, with unit cell parameters a= 11.1903(7), c = 15.600(2) A, space group P3bar1c, Z = 2. Its crystal structure was determined by single-crystal X-ray diffraction techniques. The full-matrix least-squares refinement against F(2) converged to R(1) = 0.048 (F(o) > 4sigma(F(o))), wR(2) = 0.069 (all data). The structure is based on an octahedral cluster unit (Nb6Cl(i)6O(i)6)Cl(a)6 in which the six edge-bridging oxide ligands are arranged in two sets of three on opposite sides of the Nb6 octahedron. Ti(3+) ions link the clusters through O(i) and Cl(a) ligands to form linear chains running along the c axis. The location of titanium ions correlates with the arrangement of oxide ligands around the Nb6 metal core. The chains interact with each other through additional Ti(3+) and Cs(+) ions. Interchain interactions are significantly weaker than intrachain interactions, resulting in a quasi-one-dimensional character of the overall structure.  相似文献   

19.
The tosylate (p-toluenesulfonate) cluster [Bu4N]2[W6Cl8(p-OSO2C6H4CH3)6] (1) has been prepared and characterized by IR and NMR spectroscopy, elemental analysis, and an X-ray crystal structure. This cluster complex is shown to be a useful starting material for the preparation of pseudohalide clusters, [Bu4N]2[W6Cl8(NCQ)6] (Q = O (2), S (3), and Se (4)), in high yields. Cluster 1 also serves as a precursor to the new cluster compounds: [Bu4N]2[W6Cl8(O2CCH3)6] (5), [Bu4N]2[W6Cl8((mu-NC)Mn(CO)2(C5H5))6] (6), [W6Cl8((mu-NC)Ru(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (7), and [W6Cl8((mu-NC)Os(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (8). X-ray crystal structures are reported for 1, 4, and 5.  相似文献   

20.
The structures of the hexafluoridoiridates(IV) of calcium, Ca[IrF6]·2H2O [calcium hexafluoridoiridate(IV) dihydrate], strontium, Sr[IrF6]·2H2O [strontium hexafluoridoiridate(IV) dihydrate], and barium, Ba[IrF6] [barium hexafluoridoiridate(IV)], have been determined by single‐crystal X‐ray analysis. The first two compounds are isomorphous. Their metal cations are eight‐coordinated in a distorted square‐antiprismatic coordination environment, and their anions are represented by an almost ideal octahedron. These two structures can be described as frameworks in which all atoms occupy general positions. Sr[RhF6] and Ba[RhF6] have a different space group (, from powder diffraction data) but similar cell dimensions. The structures are very close to that of Ba[IrF6]. The cation is in a cuboctahedral coordination. The metal atoms are located on special positions of symmetry, while the F atoms are in general positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号