首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A relative equilibrium of a Hamiltonian system with symmetry is a point of phase space giving an evolution which is a one-parameter orbit of the action of the symmetry group of the system. The evolutions of sufficiently small perturbations of a formally stable relative equilibrium are arbitrarily confined to that relative equilibrium's orbit under the isotropy subgroup of its momentum. However, interesting evolution along that orbit, here called drift, does occur. In this article, linearizations of relative equilibria are used to construct a first order perturbation theory explaining drift, and also to determine when the set of relative equilibria near a given relative equilibrium is a smooth symplectic submanifold of phase space.  相似文献   

2.
A fundamental class of solutions of symmetric Hamiltonian systems is relative equilibria. In this paper the nonlinear problem near a degenerate relative equilibrium is considered. The degeneracy creates a saddle-center and attendant homoclinic bifurcation in the reduced system transverse to the group orbit. The surprising result is that the curvature of the pullback of the momentum map to the Lie algebra determines the normal form for the homoclinic bifurcation. There is also an induced directional geometric phase in the homoclinic bifurcation. The backbone of the analysis is the use of singularity theory for smooth mappings between manifolds applied to the pullback of the momentum map. The theory is constructive and generalities are given for symmetric Hamiltonian systems on a vector space of dimension (2n+2) with an n-dimensional abelian symmetry group. Examples for n=1,2,3 are presented to illustrate application of the theory.  相似文献   

3.
We prove that for every proper Hamiltonian action of a Lie group G in finite dimensions the momentum map is locally G-open relative to its image (i.e. images of G-invariant open sets are open). As an application we deduce that in a Hamiltonian system with continuous Hamiltonian symmetries, extremal relative equilibria persist for every perturbation of the value of the momentum map, provided the isotropy subgroup of this value is compact. We also demonstrate how this persistence result applies to an example of ellipsoidal figures of rotating fluid. We also provide an example with plane point vortices which shows how the compactness assumption is related to persistence.  相似文献   

4.
We study the dynamics of a family of perturbed three-degree-of-freedom Hamiltonian systems which are in 1:1:1 resonance. The perturbation consists of axially symmetric cubic and quartic arbitrary polynomials. Our analysis is performed by normalisation, reduction and KAM techniques. Firstly, the system is reduced by the axial symmetry, and then, periodic solutions and KAM 3-tori of the full system are determined from the relative equilibria. Next, the oscillator symmetry is extended by normalisation up to terms of degree 4 in rectangular coordinates; after truncation of higher orders and reduction to the orbit space, some relative equilibria are established and periodic solutions and KAM 3-tori of the original system are obtained. As a third step, the reduction in the two symmetries leads to a one-degree-of-freedom system that is completely analysed in the twice reduced space. All the relative equilibria together with the stability and parametric bifurcations are determined. Moreover, the invariant 2-tori (related to the critical points of the twice reduced space), some periodic solutions and the KAM 3-tori, all corresponding to the full system, are established. Additionally, the bifurcations of equilibria occurring in the twice reduced space are reconstructed as quasi-periodic bifurcations involving 2-tori and periodic solutions of the full system.  相似文献   

5.
We investigate classical and quantum Hamiltonian reductions of free geodesic systems of complete Riemannian manifolds. We describe the reduced systems under the assumption that the underlying compact symmetry group acts in a polar manner in the sense that there exist regularly embedded, closed, connected submanifolds intersecting all orbits orthogonally in the configuration space. Hyperpolar actions on Lie groups and on symmetric spaces lead to families of integrable systems of the spin Calogero-Sutherland type. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 1, pp. 161–176, April, 2008.  相似文献   

6.
We give explicit differential equations for the dynamics of Hamiltonian systems near relative equilibria. These split the dynamics into motion along the group orbit and motion inside a slice transversal to the group orbit. The form of the differential equations that is inherited from the symplectic structure and symmetry properties of the Hamiltonian system is analysed and the effects of time reversing symmetries are included. The results will be applicable to the stability and bifurcation theories of relative equilibria of Hamiltonian systems.  相似文献   

7.
This article concerns cotangent-lifted Lie group actions; our goal is to find local and “semi-global” normal forms for these and associated structures. Our main result is a constructive cotangent bundle slice theorem that extends the Hamiltonian slice theorem of Marle [C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rendiconti del Seminario Matematico, Università e Politecnico, Torino 43 (2) (1985) 227-251] and Guillemin and Sternberg [V. Guillemin, S. Sternberg, A normal form for the moment map, in: S. Sternberg (Ed.), Differential Geometric Methods in Mathematical Physics, in: Mathematical Physics Studies, vol. 6, D. Reidel, 1984]. The result applies to all proper cotangent-lifted actions, around points with fully-isotropic momentum values.We also present a “tangent-level” commuting reduction result and use it to characterise the symplectic normal space of any cotangent-lifted action. In two special cases, we arrive at splittings of the symplectic normal space. One of these cases is when the configuration isotropy group is contained in the momentum isotropy group; in this case, our splitting generalises that given for free actions by Montgomery et al. [R. Montgomery, J.E. Marsden, T.S. Ratiu, Gauged Lie-Poisson structures, Cont. Math. AMS 128 (1984) 101-114]. The other case includes all relative equilibria of simple mechanical systems. In both of these special cases, the new splitting leads to a refinement of the so-called reconstruction equations or bundle equations [J.-P. Ortega, Symmetry, reduction, and stability in Hamiltonian systems, PhD thesis, University of California, Santa Cruz, 1998; J.-P. Ortega, T.S. Ratiu, A symplectic slice theorem, Lett. Math. Phys. 59 (1) (2002) 81-93; M. Roberts, C. Wulff, J.S.W. Lamb, Hamiltonian systems near relative equilibria, J. Differential Equations 179 (2) (2002) 562-604]. We also note cotangent-bundle-specific local normal forms for symplectic reduced spaces.  相似文献   

8.
Summary We use recent results on symplectic integration of Hamiltonian systems with constraints to construct symplectic integrators on cotangent bundles of manifolds by embedding the manifold in a linear space. We also prove that these methods are equivariant under cotangent lifts of a symmetry group acting linearly on the ambient space and consequently preserve the corresponding momentum. These results provide an elementary construction of symplectic integrators for Lie-Poisson systems and other Hamiltonian systems with symmetry. The methods are illustrated on the free rigid body, the heavy top, and the double spherical pendulum.  相似文献   

9.
Given an action of a complex reductive Lie group G on a normal variety X, we show that every analytically Zariski-open subset of X admitting an analytic Hilbert quotient with projective quotient space is given as the set of semistable points with respect to some G-linearised Weil divisor on X. Applying this result to Hamiltonian actions on algebraic varieties, we prove that semistability with respect to a momentum map is equivalent to GIT-semistability in the sense of Mumford and Hausen. It follows that the number of compact momentum map quotients of a given algebraic Hamiltonian G-variety is finite. As further corollary we derive a projectivity criterion for varieties with compact Kähler quotient.  相似文献   

10.
An interesting situation occurs when the linearized dynamics of the shape of a formally stable Hamiltonian relative equilibrium at nongeneric momentum 1:1 resonates with a frequency of the relative equilibrium's generator. In this case some of the shape variables couple to the group variables to first order in the momentum perturbation, and the first order perturbation theory implies that the relative equilibrium slowly changes orientation in the same way that a charged particle with magnetic moment moves on a sphere under the influence of a radial magnetic monopole. In the course of showing this a normal form is constructed for linearizations of relative equilibria and for Hamiltonians near group orbits of relative equilibria. Received August 27, 1998; in final form February 20, 1999  相似文献   

11.
We study the topology of foliations of close cohomologous Morse forms (smooth closed 1-forms with non-degenerate singularities) on a smooth closed oriented manifold. We show that if a closed form has a compact leave γ, then any close cohomologous form has a compact leave close to γ. Then we prove that the set of Morse forms with compactifiable foliations (foliations with no locally dense leaves) is open in a cohomology class, and the number of homologically independent compact leaves does not decrease under small perturbation of the form; moreover, for generic forms (Morse forms with each singular leaf containing a unique singularity; the set of generic forms is dense in the space of closed 1-forms) this number is locally constant.  相似文献   

12.
Summary The motion of two identical, axially symmetric coupled rigid bodies with constant linear momentum gives rise to a Hamiltonian system with a fairly large symmetry group, namely,SO(3)×S 1 ×S 1 , which in turn leads to Hamiltonian flows on reduced spaces. In this paper, we illustrate the use of equivariant symplectomorphisms and the reduction in stages procedure in determining the topology of these reduced spaces. It is shown that the reduced spaces corresponding to regular momenta are either two- or four-dimensional and, in the four-dimensional case, the reduced space gets blown up (or blown down) as the momentum value crosses the singular boundary.  相似文献   

13.
Summary. We describe a method for finding the families of relative equilibria of molecules that bifurcate from an equilibrium point as the angular momentum is increased from 0 . Relative equilibria are steady rotations about a stationary axis during which the shape of the molecule remains constant. We show that the bifurcating families correspond bijectively to the critical points of a function h on the two-sphere which is invariant under an action of the symmetry group of the equilibrium point. From this it follows that for each rotation axis of the equilibrium configuration there is a bifurcating family of relative equilibria for which the molecule rotates about that axis. In addition, for each reflection plane there is a family of relative equilibria for which the molecule rotates about an axis perpendicular to the plane. We also show that if the equilibrium is nondegenerate and stable, then the minima, maxima, and saddle points of h correspond respectively to relative equilibria which are (orbitally) Liapounov stable, linearly stable, and linearly unstable. The stabilities of the bifurcating branches of relative equilibria are computed explicitly for XY 2 , X 3 , and XY 4 molecules. These existence and stability results are corollaries of more general theorems on relative equilibria of G -invariant Hamiltonian systems that bifurcate from equilibria with finite isotropy subgroups as the momentum is varied. In the general case, the function h is defined on the Lie algebra dual {\frak g} * and the bifurcating relative equilibria correspond to critical points of the restrictions of h to the coadjoint orbits in {\frak g} * . Received June 9, 1997; second revision received December 15, 1997; final revision received January 19, 1998  相似文献   

14.
We generalize the Weinstein-Moser theorem on the existence of nonlinear normal modes near an equilibrium in a Hamiltonian system to a theorem on the existence of relative periodic orbits near a relative equilibrium in a Hamiltonian system with continuous symmetries. In particular, we prove that under appropriate hypotheses there exist relative periodic orbits near relative equilibria even when these relative equilibria are singular points of the corresponding moment map, i.e. when the reduced spaces are singular.  相似文献   

15.
The paper is devoted to the bifurcation analysis and the Conley index in Hamiltonian dynamical systems. We discuss the phenomenon of appearance (disappearance) of equilibrium points under the change of the Morse index of a critical point of a Hamiltonian. As an application of these techniques we find new relative equilibria in the problem of the motion of three point vortices of equal intensity in a circular domain.  相似文献   

16.
In this paper, our goal is to study the regular reduction theory of regular controlled Hamiltonian (RCH) systems with symplectic structure and symmetry, and this reduction is an extension of regular symplectic reduction theory of Hamiltonian systems under regular controlled Hamiltonian equivalence conditions. Thus, in order to describe uniformly RCH systems defined on a cotangent bundle and on the regular reduced spaces, we first define a kind of RCH systems on a symplectic fiber bundle. Then we introduce regular point and regular orbit reducible RCH systems with symmetry by using momentum map and the associated reduced symplectic forms. Moreover, we give regular point and regular orbit reduction theorems for RCH systems to explain the relationships between RpCH-equivalence, RoCH-equivalence for reducible RCH systems with symmetry and RCH-equivalence for associated reduced RCH systems. Finally, as an application we regard rigid body and heavy top as well as them with internal rotors as the regular point reducible RCH systems on the rotation group SO(3) and on the Euclidean group SE(3), as well as on their generalizations, respectively, and discuss their RCH-equivalence. We also describe the RCH system and RCH-equivalence from the viewpoint of port Hamiltonian system with a symplectic structure.  相似文献   

17.
Summary We present a new approach to the Morse theory which is based on a generalization of the Conley index to non locally compact spaces. The variant of the Morse theory which we obtain seems suitable for the applications to nonlinear functionals analysis. Some applications are given here; they mainly concern the study of periodic solutions of second order Hamiltonian systems. Other applications are in some quoted papers.  相似文献   

18.
Resonant and nonresonant Hopf bifurcations from relative equilibria posed in two spatial dimensions, in systems with Euclidean SE(2) symmetry, have been extensively studied in the context of spiral waves in a plane and are now well understood. We investigate Hopf bifurcations from relative equilibria posed in systems with compact SO(3) symmetry where SO(3) is the group of rotations in three dimensions/on a sphere. Unlike the SE(2) case the skew product equations cannot be solved directly and we use the normal form theory due to Fiedler and Turaev to simplify these systems. We show that the normal form theory resolves the nonresonant case, but not the resonant case. New methods developed in this paper combined with the normal form theory resolves the resonant case.  相似文献   

19.
We diagonalize the metric Hamiltonian and evaluate the energy spectrum of the corresponding quasiparticles for a scalar field coupled to a curvature in the case of an N-dimensional homogeneous isotropic space. The energy spectrum for the quasiparticles corresponding to the diagonal form of the canonical Hamiltonian is also evaluated. We construct a modified energy–momentum tensor with the following properties: for the conformal scalar field, it coincides with the metric energy–momentum tensor; the energies of the particles corresponding to its diagonal form are equal to the oscillator frequency; and the number of such particles created in a nonstationary metric is finite. We show that the Hamiltonian defined by the modified energy–momentum tensor can be obtained as the canonical Hamiltonian under a certain choice of variables.  相似文献   

20.
郑明亮 《应用数学和力学》2021,42(11):1161-1168
研究了位形间中含单时滞参数的非保守力学系统的Lie对称性和守恒量。首先,利用含时滞的动力学Hamilton原理,建立了含时滞的非保守系统的分段Lagrange运动方程;其次,利用微分方程容许Lie群理论,得到系统的Lie对称确定方程;然后,根据对称性与守恒量之间的关系,通过构造结构方程,得到含时滞的非保守系统的Lie定理;最后,给出了两个具体的算例说明了方法的应用。结果表明:时滞参数的存在使非保守系统的Lagrange方程呈现分段特性,相应的Lie对称性确定方程的个数应是自由度数目的2倍,这对生成元函数提出了更高的限制,同时,守恒量呈现依赖速度项的分段表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号