首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physica A》1987,143(3):547-567
The momentum autocorrelation function c(t) for a quantum oscillator coupled with harmonic forces to a heat bath of oscillators is calculated at low temperatures. It is found that c(t) contains two distinct terms: one, the zero-point contribution c0(t), is temperature independent, and the other, c1(t), does depend on temperature. We concentrate our attention on the low-temperature case. An expression for c1(t) is obtained, which is valid for arbitrary strenghts of the coupling and for arbitrary times. It is shown that c1(t) is governed by the low-frequency behaviour of F(λ) = A2(λ)ϱ(λ), where ϱ(λ) is the density of normal modes and A(λ) is the central-oscillator component of the λth normal mode; other details of the problem are irrelevant. It is found that c1(t) decays in time as an inverse-power law, with a relaxation time tq ≈ ħ/kT.  相似文献   

2.
Alberto Sicilia 《Physica A》2007,386(2):674-677
We obtain the exact distribution of the areas enclosed by domain boundaries (“hulls”) during the coarsening dynamics of a two-dimensional nonconserved scalar field. We prove that the number of hulls per unit area that enclose an area greater than A has the form Nh(A,t)=2c/(A+λt), where . This result is also a demonstration of the validity of the dynamical scaling hypothesis in this system. We also show that domain areas (regions of aligned spins) have a similar distribution.  相似文献   

3.
In this paper, we study a few spectral properties of a non-symmetrical operator arising in the Gribov theory. The first and second section are devoted to Bargmann's representation and the study of general spectral properties of the operator: $$\begin{gathered} H_{\lambda ',\mu ,\lambda ,\alpha } = \lambda '\sum\limits_{j = 1}^N {A_j^{ * 2} A_j^2 + \mu \sum\limits_{j = 1}^N {A_j^ * A_j + i\lambda \sum\limits_{j = 1}^N {A_j^ * (A_j + A_j^ * )A_j } } } \hfill \\ + \alpha \sum\limits_{j = 1}^{N - 1} {(A_{j + 1}^ * A_j + A_j^ * A_{j + 1} ),} \hfill \\ \end{gathered}$$ whereA* j andA j ,j∈[1,N] are the creation and annihilation operators. In the third section, we restrict our study to the case of nul transverse dimension (N=1). Following the study done in [1], we consider the operator: $$H_{\lambda ',\mu ,\lambda } = \lambda 'A^{ * 2} A^2 + \mu A^ * A + i\lambda A^ * (A + A^ * )A,$$ whereA* andA are the creation and annihilation operators. For λ′>0 and λ′2≦μλ′+λ2. We prove that the solutions of the equationu′(t)+H λ′, μ,λ u(t)=0 are expandable in series of the eigenvectors ofH λ′,μ,λ fort>0. In the last section, we show that the smallest eigenvalue σ(α) of the operatorH λ′,μ,λ,α is analytic in α, and thus admits an expansion: σ(α)=σ0+ασ12σ2+..., where σ0 is the smallest eigenvalue of the operatorH λ′,μ,λ,0.  相似文献   

4.
We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems such as small magnetic clusters, we consider models with free boundary conditions. For a field-driven transition with two coexisting phases at the infinite-volume transition pointh=h t , we prove that the low-temperature, finite-volume magnetizationm free(L, h) per site in a cubic volume of sizeL d behaves like $$m_{free} (L,h) = \frac{{m_ + + m_ - }}{2} + \frac{{m_ + - m_ - }}{2}tanh\left[ {\frac{{m_ + - m_ - }}{2}L^d (h - h_\chi (L))} \right] + O\left( {\frac{1}{L}} \right)$$ whereh x (L) is the position of the maximum of the (finite-volume) susceptibility andm ± are the infinite-volume magnetizations ath=h t +0 andh=h t ?0, respectively. We show thath x (L) is shifted by an amount proportional to 1/L with respect to the infinite-volume transition pointh t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boundary conditions, which for an asymmetric transition with two coexisting phases is proportional only to 1/L 2d . One can consider also other definitions of finite-volume transition points, for example, the positionh U (L) of the maximum of the so-called Binder cumulantU free(L,h). Whileh U (L) is again shifted by an amount proportional to 1/L with respect to the infinite-volume transition pointh t , its shift with respect toh χ (L) is of the much smaller order 1/L 2d . We give explicit formulas for the proportionality factors, and show that, in the leading 1/L 2d term, the relative shift is the same as that for periodic boundary conditions.  相似文献   

5.
The theory of twisting nuclear vibrations developed by Holzwarth and Eckart to elucidate the nature of the 2? giant mode is extended to high-multipole, spin-independentM λ,T=0 resonances. Within the framework of the distorted Fermi-surface model the parameters of inertia and stiffness against multipolarity for the nuclear incompressible Fermi-drop are derived. The energies and probabilities of the twistingM λ,T=0 modes calculated in fact without adjustable constants readE(M λ)=?ω F \(\left[ {\frac{{(2\lambda + 3)(\lambda - 1)}}{5}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} \) andB(M λ) = γλ Z2 A (2λ-4)/3 μ2 fm(2λ-2)respectively. The comparison with data for the 2? resonance and predictions for higher multipoles are presented.  相似文献   

6.
We investigate solutions to the equation ? t ?? $\mathcal{D}$ Δ?=λS 2?, where S(xt) is a Gaussian stochastic field with covariance C(x?x′, tt′), and x $\mathbb{R}$ d . It is shown that the coupling λ cN (t) at which the N-th moment <? N (xt)> diverges at time t, is always less or equal for $\mathcal{D}$ >0 than for $\mathcal{D}$ =0. Equality holds under some reasonable assumptions on C and, in this case, λ cN (t)= c (t) where λ c (t) is the value of λ at which <exp[λ t 0 S 2(0, s) ds]> diverges. The $\mathcal{D}$ =0 case is solved for a class of S. The dependence of λ cN (t) on d is analyzed. Similar behavior is conjectured when diffusion is replaced by diffraction, $\mathcal{D}$ i $\mathcal{D}$ , the case of interest for backscattering instabilities in laser-plasma interaction.  相似文献   

7.
We show in details how to determine and identify the algebra g = {Ai} of the infinitesimal symmetry operators of the following pseudo-diffusion equation (PSDE) LQ\(\left[ {\frac{\partial }{{\partial t}} - \frac{1}{4}\left( {\frac{{{\partial ^2}}}{{\partial {x^2}}} - \frac{1}{{{t^2}}}\frac{{{\partial ^2}}}{{\partial {p^2}}}} \right)} \right]\) Q(x, p, t) = 0. This equation describes the behavior of the Q functions in the (x, p) phase space as a function of a squeeze parameter y, where t = e 2y. We illustrate how G i(λ) ≡ exp[λA i] can be used to obtain interesting solutions. We show that one of the symmetry generators, A 4, acts in the (x, p) plane like the Lorentz boost in (x, t) plane. We construct the Anti-de-Sitter algebra so(3, 2) from quadratic products of 4 of the A i, which makes it the invariance algebra of the PSDE. We also discuss the unusual contraction of so(3, 1) to so(1, 1)? h2. We show that the spherical Bessel functions I 0(z) and K 0(z) yield solutions of the PSDE, where z is scaling and “twist” invariant.  相似文献   

8.
9.
A generalization of the Vollhardt-Wölfle localization theory is proposed to make it possible to study the spatial-temporal dispersion of the kinetic coefficients of a d-dimensional disordered system in the low-frequency, long-wavelength range (ω?F and q?k F ). It is shown that the critical behavior of the generalized diffusion coefficient D(q,ω) near the Anderson transition agrees with the general Berezinskii-Gor’kov localization criterion. More precisely, on the metallic side of the transition the static diffusion coefficient D(q,0) vanishes at a mobility threshold λ c common for all q: D(q, 0)∝t=(λ c ?λ)/λ c →0, where λ=1/(2π?F τ) is a dimensionless coupling constant. On the insulator side, q≠0 D(q,ω)∝? as ω→0 for all finite q. Within these limits, the scale of the spatial dispersion of D(q,ω) decreases in proportion to t in the metallic phase and in proportion to ωξ 2, where ξ is the localization length, in the insulator phase until it reaches its lower limit ~λ F. The suppression of the spatial dispersion of D(q,ω) near the Anderson transition up to the atomic scale confirms the asymptotic validity of the Vollhardt-Wölfle approximation: D(q,ω)?D(ω) as |t|→0 and ω→0. By contrast, the scale of the spatial dispersion of the electrical conductivity in the insulator phase is of order of the localization length and diverges in proportion to |t|?v as |t|→0.  相似文献   

10.
Let ν=detren(1+K g ) be the renormalized Matthews-Salam determinant of (QED)2, where \(K_g = ieA_{g,} S = \left( {\sum {\gamma _\mu \partial } _\mu + m} \right)^{ - 1} \) is euclidean fermion propagator of one of the following boundary conditions: (1) free, (2) periodic at ?Λ, Λ=[?L/2;L/2]2, (3) anti-periodic at ?Λ, and \(A_g (x) = (\sum \gamma _\mu A_\mu (x))g(x)\) . Hereg(x)=1 ifxεΛ0=[?r/2,r/2]2 с Λ and 0 otherwise. Then we show
  1. νεL p (dμ(A)), p>0. Further we prove a new determinant inequality which holds for the QED, QCD-type models containing fermions. This enables us to prove:
  2. Z0)=∫νdμ(A)≦exp[c0|]. Similar volume dependence is shown for the Schwinger functions.
  相似文献   

11.
The two-photon-decay probability of the metastable 22 S12 level of hydrogen has been measured. The result A(λ)dλ = 1.5 sec?1 ± 43% in the spectral range dλ = (255.4?232)nm ± 5% is in agreement with the theoretical prediction.  相似文献   

12.
In this paper, we study the problem of continuous time option pricing with transaction costs by using the homogeneous subdiffusive fractional Brownian motion (HFBM) Z(t)=X(Sα(t)), 0<α<1, here dX(τ)=μX(τ)(dτ)2H+σX(τ)dBH(τ), as a model of asset prices, which captures the subdiffusive characteristic of financial markets. We find the corresponding subdiffusive Black-Scholes equation and the Black-Scholes formula for the fair prices of European option, the turnover and transaction costs of replicating strategies. We also give the total transaction costs.  相似文献   

13.
The magnetization σ and the longitudinal (λ) and transverse (λ) magnetostrictions of the NiFe0.5Cr1.5O4 ferrite containing the tetrahedral ions Ni2+ with the triplet orbital ground state have been investigated for the first time at a temperature of 4.2 K in fields up to 55 kOe. It is revealed that the NiFe0.5Cr1.5O4 ferrite exhibits an anomalously large magnetic anisotropy (H c=12.5 kOe) and magnetostrictions (λ≈?870×10?6 and λ≈800×10?6). In strong fields, the magnetostrictions λ and λ are found to be anisotropic in character; i.e., the susceptibility Δλ∥p and Δλ⊥p. The conclusion is drawn that the studied compound is characterized by two paraprocesses: one paraprocess in the B sublattice has an exchange nature, and the second process in the A sublattice is due to the spin-orbit interaction of Ni A 2+ ions.  相似文献   

14.
We consider mass-conserving self-similar solutions for Smoluchowski’s coagulation equation with kernel K(ξ,η)=(ξη) λ with λ∈(0,1/2). It is known that such self-similar solutions g(x) satisfy that x ?1+2λ g(x) is bounded above and below as x→0. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function h(x)=h λ x ?1+2λ g(x) in the limit λ→0. It turns out that \(h \sim 1+ C x^{\lambda/2} \cos(\sqrt{\lambda} \log x)\) as x→0. As x becomes larger h develops peaks of height 1/λ that are separated by large regions where h is small. Finally, h converges to zero exponentially fast as x→∞. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE.  相似文献   

15.
The reconstructed experimental transverse momentum (p t ) distributions of Δ0(1232) resonances produced in p 12C and d 12C collisions at 4.2 A GeV/c and the corresponding spectra calculated using Modified FRITIOF model were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of Δ0(1232) resonances were extracted from fitting their p t spectra with one-temperature Hagedorn function. The extracted spectral temperatures of Δ0(1232) were compared with the corresponding temperatures of π ? mesons in p 12C and d 12C collisions at 4.2 A GeV/c obtained similarly from fitting the p t spectra of π ? by one-temperature Hagedorn function. The spectral temperatures of Δ0(1232) resonances agreed within uncertainties with the corresponding temperatures of π ? mesons produced in p 12C and d 12C collisions at 4.2 A GeV/c.  相似文献   

16.
We consider the Schrödinger-like operatorH in which the role of a potential is played by the lattice sum of rank 1 operators \(|\left. {v_n } \right\rangle \left\langle {v_n |} \right.\) multiplied by g tan π[(α,n)+ω],g>0, α∈? d ,n? d , ω∈[0, 1]. We show that if the vector α satisfies the Diophantine condition and the Fourier transform support of the functionsv n (x)=v(x-n),x? d ,n? d , is small then the spectrum ofH consists of a dense point component coinciding with? and an absolutely continuous component coinciding with [?, ∞), where ? is the radius of the mentioned support. Besides, we find the integrated density of statesN(λ) (it has a jump at λ=?) and zero temperature a.c. conductivityσ λ (v), that also has a jump at λ=? and vanishes faster than any power of the external field frequency ν as ν→0 and λ≠?.  相似文献   

17.
We analyze the exit time (first passage time) problem for the Ornstein-Uhlenbeck model of Brownian motion. Specifically, consider the positionX(t) of a particle whose velocity is an Ornstein-Uhlenbeck process with amplitudeσ/ρ and correlation time ε2, $$dX/dt = \sigma Z/\varepsilon , dZ/dt = - Z/\varepsilon ^2 + 2^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \xi (t)/\varepsilon $$ whereξ(t) is Gaussian white noise. Let the exit timet ex be the first time the particle escapes an interval ?A, given that it starts atX(0)=0 withZ(0)=z 0. Here we determine the exit time probability distributionF(t)≡Prob {t ex>t} by directly solving the Fokker-Planck equation. In brief, after taking a Laplace transform, we use singular perturbation methods to reduce the Fokker-Planck equation to a boundary layer problem. This boundary layer problem turns out to be a half-range expansion problem, which we solve via complex variable techniques. This yields the Laplace transform ofF(t) to within a transcendentally smallO(e ?A/εσ +e ?B/εσ error. We then obtainF(t) by inverting the transform order by order in ε. In particular, by lettingB→∞ we obtain the solution to Wang and Uhlenbeck's unsolved problem b; throughO2σ2/A 1) this solution is $$F(t) = Erf\left\{ {\frac{{A + \varepsilon \sigma \alpha + \varepsilon \sigma z_0 }}{{2\sigma (t - \varepsilon ^2 \kappa )^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} \right\} + ... for \frac{t}{{\varepsilon ^2 }} > > 1$$ andF=1 otherwise. Here, α=∥ξ(1/2)∥=1.4603?, where ξ is the Riemann zeta function, and the constant κ is 0.22749?.  相似文献   

18.
We consider a classical system, in a ν-dimensional cube Ω, with pair potential of the formq(r) + γ v φ(γr). Dividing Ω into a network of cells ω1, ω2,..., we regard the system as in a metastable state if the mean density of particles in each cell lies in a suitable neighborhood of the overall mean densityρ, withρ and the temperature satisfying $$f_0 (\rho ) + \tfrac{1}{2}\alpha \rho ^2 > f(\rho ,0 + )$$ and $$f''_0 (\rho ) + 2\alpha > 0$$ wheref(ρ, 0+) is the Helmholz free energy density (HFED) in the limit γ 0; α = ∫ φ(r)d v r andf 0 (ρ) is the HFED for the caseφ = 0. It is shown rigorously that, for periodic boundary conditions, the conditional probability for a system in the grand canonical ensemble to violate the constraints at timet > 0, given that it satisfied them at time 0, is at mostλt, whereλ is a quantity going to 0 in the limit $$|\Omega | \gg \gamma ^{ - v} \gg |\omega | \gg r_0 \ln |\Omega |$$ Here,r 0 is a length characterizing the potentialq, andx ? y meansx/y → +∞. For rigid walls, the same result is proved under somewhat more restrictive conditions. It is argued that a system started in the metastable state will behave (over times ?λ ?1) like a uniform thermodynamic phase with HFED f0(ρ) + 1/2αρ2, but that having once left this metastable state, the system is unlikely to return.  相似文献   

19.
吴杭生  顾一鸣 《物理学报》1981,30(12):1693-1698
本文把作者在前面两篇文章导出的Tc公式推广成下面形式:Tc=αωloglogc)*/(λ-μ*))exp{-(1+λ)/(λ-μ*)},并从线性Eliashberg方程出发,导出了计算α的方程组。α一般是λ和μ*的函数。在弱耦合极限下,由上述方程组解得,α=2γ/π,其中lnγ=C=0.5772是Euler常数。这个结果表明了,前面两篇文章得到的Tc公式在弱耦合极限下是正确的。作者进而在Einstein谱和μ*=0情形,用数值计算方法从定α的方程组算出当λ=0.23,0.25,0.38和0.48时,a的数值。结果表明,至少在0.23≤λ≤0.45区间中,α变化很小,近似等于1/1.30。此时,本文的Tc公式实际上就是Allen及Dynes修改后的经验的McMillan Tc公式。 关键词:  相似文献   

20.
A logistic growth model driven by additive and multiplicative noises which are correlated with each other is investigated. Using the Novikov theorem and the projection operator method, we obtain the analytic expressions of the stationary probability distribution pst(x), the relaxation time Tc, and the normalized correlation function C(s) of this system. The computational results show that the relaxation time Tc increases as the cross-correlated time τ increases, but decreases while the cross-correlated strength λ increases. The relationship between the relaxation time C(s) and the decay time s is given. Correlation time τ and correlation strength λ play an opposite role on dynamic properties in this logistic growth model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号