首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonequilibrium molecular-dynamics (MD) simulations have been performed for the growth and dissolution of a spherical methane hydrate crystallite, surrounded by a saturated water-methane liquid phase, in both the absence and presence of external electromagnetic (e/m) fields in the microwave to far infrared range (5-7500 GHz) at root-mean square (rms) electric field intensities of up to 0.2 V/A. A rigid/polarizable potential was used to model water and a rigid/nonpolarizable model was utilized for methane. In the absence of a field, it was found that the average growth rate of the crystallite was approximately 0.32 water and 0.045 methane molecules per picosecond, evaluated over a 500 ps NPT simulation for three different initial geometries. Upon the application of an e/m field, it was found that no significant deviations from the zero-field crystal growth patterns were observed for rms electric field intensities of less than about 0.1 V/A, regardless of the field frequency. At, and above, this "threshold" intensity, it was found that dissolution took place. The mobility of the molecules in the system was enhanced by the e/m field, to the greatest extent for frequencies of 50-100 GHz. Furthermore, it was observed that there was a systematic frequency variation in the pattern of dipole alignment with the external field and this led to marked differences in the rate of dissolution.  相似文献   

2.
采用正则系综(NVT)分子动力学方法模拟研究277.0 K、11.45 mol·L-1的热力学抑制剂乙二醇(EG)溶液作用下甲烷水合物分解微观过程. 模拟显示甲烷水合物的分解从甲烷水合物固体表面开始, 逐渐向内部推移, 固态水合物在分解过程中逐渐缩小, 直至消失. 固态水合物的分解从晶格扭曲变形开始, 之后笼形框架结构破裂, 最后形成笼形结构碎片. 同时已经分解的甲烷水合物在外层形成水膜, 包裹里层正在分解的甲烷水合物, 增大里层甲烷水合物分解传质阻力.  相似文献   

3.
Dissociation processes of methane hydrate synthesized with glass beads were investigated using powder X-ray diffraction and calorimetry. Methane hydrate formed with coarse glass beads dissociated quickly at 150-200 K; in this temperature range methane hydrate dissociates at atmospheric pressure. In contrast, methane hydrate formed with glass beads less than a few microns in size showed very high stability up to just below the melting point of ice, even though this temperature is well outside the zone of thermodynamic stability of the hydrate. The rate-determining steps for methane hydrate dissociation within pores are also discussed. The experimental results suggest that methane hydrate existing naturally within the pores of fine particles such as mud at low temperatures would be significantly more stable than expected thermodynamically.  相似文献   

4.
In order to study the nature of gas hydrate in porous media, the formation and dissociation processes of methane hydrate in loess were investigated. Five cooling rates were applied to form methane hydrate. The nucleation times of methane hydrate formation at each cooling rate were measured for comparison. The experimental results show that cooling rate is a significant factor affecting the nucleation of methane hydrate and gas conversion. Under the same initial conditions, the faster the cooling rate, the shorter the nucleation time, and the lower the methane gas conversion. Five dissociating temperatures were applied to conduct the dissociation experiment of methane hydrate formed in loess. The experimental results indicated that the temperature evidently controlled the dissociation of methane hydrate in loess and the higher the dissociating temperature, the faster the dissociating rates of methane hydrate.  相似文献   

5.
We report the in situ observation from diffraction data of the conversion of a gas hydrate with the structure II (sII) lattice to one with the structure I (sI) lattice. Initially, the in situ formation, dissociation, and reactivity of argon gas clathrate hydrate was investigated by time-of-flight neutron powder diffraction at temperatures ranging from 230 to 263 K and pressures up to 5000 psi (34.5 MPa). These samples were prepared from deuterated ice crystals and transformed to hydrate by pressurizing the system with argon gas. Complete transformation from D(2)O ice to sII Ar hydrate was observed as the sample temperature was slowly increased through the D(2)O ice melting point. The transformation of sII argon hydrate to sI hydrate was achieved by removing excess Ar gas and exposing the hydrate to liquid CO(2) by pressurizing the Ar hydrate with CO(2). Results suggest the sI hydrate formed from CO(2) exchange in argon sII hydrate is a mixed Ar/CO(2) hydrate. The proposed exchange mechanism is consistent with clathrate hydrate being an equilibrium system in which guest molecules are exchanging between encapsulated molecules in the solid hydrate and free molecules in the surrounding gas or liquid phase.  相似文献   

6.
Hydrate that is exposed to fluid phases which are undersaturated with respect to equilibrium with the hydrate will dissociate due to gradients in chemical potential. Kinetic rates of methane hydrate dissociation towards pure water and seawater is important relative to hydrate reservoirs that are partly exposed towards the ocean floor. Corresponding results for carbon dioxide hydrate is important relative to hydrate sealing effects related to storage of carbon dioxide in cold aquifers. In this work we apply a phase field theory to the prediction of carbon dioxide hydrate and methane hydrate dissociation towards pure water at various conditions, some of which are inside and some which are outside the stability regions of the hydrates with respect to temperature and pressure. As expected from the differences in water solubility the methane hydrate dissolves significantly slower towards pure water than carbon dioxide hydrate.  相似文献   

7.
We present results from a molecular dynamics study of the dissociation behavior of carbon dioxide (CO(2)) hydrates. We explore the effects of hydrate occupancy and temperature on the rate of hydrate dissociation. We quantify the rate of dissociation by tracking CO(2) release into the liquid water phase as well as the velocity of the hydrate-liquid water interface. Our results show that the rate of dissociation is dependent on the fractional occupancy of each cage type and cannot be described simply in terms of overall hydrate occupancy. Specifically, we find that hydrates with similar overall occupancy differ in their dissociation behavior depending on whether the small or large cages are empty. In addition, individual cages behave differently depending on their surrounding environment. For the same overall occupancy, filled small and large cages dissociate faster in the presence of empty large cages than when empty small cages are present. Therefore, hydrate dissociation is a collective phenomenon that cannot be described by focusing solely on individual cage behavior.  相似文献   

8.
The surface melting process of structure sI methane hydrate is simulated at T = 240, 260, 280, and 300 K using NVT molecular dynamics method. The simulation results show that a quasi-liquid layer will be formed during the melting process. The density distribution, translation, orientation, and dynamic properties of water molecules in the quasi-liquid layer are calculated as a function of the distance normal to the interface, which indicates the performance of quasi-liquid layer exhibits a continuous change from crystal-like to liquid-like. The quasi-liquid layer plays as a resistance of mass transfer restraining the diffusion of water and methane molecules during the melting process. The resistance of quasi-liquid layer will restrain methane molecules diffuse from hydrate phase to gas phase and slow the melting process, which can be considered as a possible mechanism of self-preservation effect. The performance of quasi-liquid layer is more crystal-like when the temperature is lower than the melt- ing-point of water, which will exhibit an obvious self-preservation. The self-preservation will weaken while the temperature is higher than the melting-point of water because of the liquid-like performance of the quasi-liquid layer.  相似文献   

9.
Direct measurements of the dissociation behaviors of pure methane and ethane hydrates trapped in sintered tetrahydrofuran hydrate through a temperature ramping method showed that the tetrahydrofuran hydrate controls dissociation of the gas hydrates under thermodynamic instability at temperatures above the melting point of ice.  相似文献   

10.
Modulated DSC for gas hydrates analysis   总被引:1,自引:0,他引:1  
Modulated DSC has been applied to the study of methane, ethane and propane hydrates at different hydrate and ice concentrations. The reversing component of the TMDSC curves, makes it possible to characterize such hydrates. Methane and ethane hydrates show the melting-decomposition peak at a temperatures higher than the ice contained in the sample, while propane hydrate melts and decomposes at lower temperature than the ice present in the sample. The hydrate peaks tend to disappear if the hydrate is stored at atmospheric pressure. Guest size and cavity occupation fix the heat of dissociation and stability of the hydrates, as confirmed by parallel tests on tetrahydrofurane hydrates.  相似文献   

11.
The thermal stability of gamma-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210-260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 +/- 1.6 kJ/mol for the lower temperature region of 210-230 K and 54.8 +/- 5.7 kJ/mol for the higher temperature region of 235-260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235-260 K.  相似文献   

12.
An experiment with well defined gas-water interfacial surface area was developed to study the crystallization and crystal growth of methane hydrates. Measurable formation rates were observed only when melting ice was involved. No hydrates nucleated from liquid water or from non-melting ice. It is concluded that melting ice, which like hydrate water is hydrogen-bonded, provides a template for hydrate nucleation as well as providing a heat sink for absorbing the heat of formation during hydrate growth. The experiment was conducted in the absence of mixing so that hydrate crystals grew under quiescent conditions.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

13.
Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.  相似文献   

14.
The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was <0.3‰. We have therefore confirmed that there is no isotope fractionation when the gas hydrate dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected by physical processes, and can thus be interpreted to result from either the gas source or associated microbial processes.  相似文献   

15.
A single-sided transient plane source technique has been used to determine the thermal conductivity and thermal diffusivity of a compacted methane hydrate sample over the temperature range of 261.5-277.4 K and at gas-phase pressures ranging from 3.8 to 14.2 MPa. The average thermal conductivity, 0.68 +/- 0.01 W/(m K), and thermal diffusivity, 2.04 x 10(-7) +/- 0.04 x 10(-7) m2/s, values are, respectively, higher and lower than previously reported values. Equilibrium molecular dynamics (MD) simulations of methane hydrate have also been performed in the NPT ensemble to estimate the thermal conductivity for methane compositions ranging from 80 to 100% of the maximum theoretical occupation, at 276 K and at pressures ranging from 0.1 to 100 MPa. Calculations were performed with three rigid potential models for water, namely, SPC/E, TIP4P-Ew, and TIP4P-FQ, the last of which includes the effects of polarizability. The thermal conductivities predicted from MD simulations were in reasonable agreement with experimental results, ranging from about 0.52 to 0.77 W/(m K) for the different potential models with the polarizable water model giving the best agreement with experiments. The MD simulation method was validated by comparing calculated and experimental thermal conductivity values for ice and liquid water. The simulations were in reasonable agreement with experimental data. The simulations predict a slight increase in the thermal conductivity with decreasing methane occupation of the hydrate cages. The thermal conductivity was found to be essentially independent of pressure in both simulations and experiments. Our experimental and simulation thermal conductivity results provide data to help predict gas hydrate stability in sediments for the purposes of production or estimating methane release into the environment due to gradual warming.  相似文献   

16.
《Fluid Phase Equilibria》2006,242(2):123-128
The kinetic data of methane hydrate dissociation at various temperatures and pressures were measured in a sapphire cell apparatus by depressurizing method. When the temperature was higher than 0 °C, the experimental results showed that the hydrate dissociation rate was controlled by intrinsic dissociation reaction. When the temperature was lower than 0 °C, water generated from the hydrate dissociation would transform into ice rapidly at the surface of hydrate crystal. The released gas diffused from the hydrate and ice mixture to the bulk of gas phase. With the hydrate continuous dissociation, the boundary of ice–hydrate moved toward water/ice phase. The hydrate dissociation was controlled by gas diffusion, and the hydrate dissociation process was treated as a moving boundary problem. Corresponding kinetic models for hydrate dissociation were established and good agreements with experimental data were achieved.  相似文献   

17.
Local density profiles and local component pressure profiles were obtained for two model systems containing methane hydrate and ice by molecular dynamics simulation. The ice matrix with methane hydrate clusters inserted into it was shown to be stable at normal pressure and even at a temperature higher than the temperature of methane hydrate dissociation. Calculations showed that the pressure in such a methane hydrate cluster inserted into ice was higher than in the ice phase. There were, however, no strong structure distortions because of the formation of a network of strong hydrogen bonds between the hydrate and ice phases.  相似文献   

18.
The dissociation conditions of methane hydrate in the presence of 0.1, 0.2, 0.3 and 0.4 mass fraction of 1-ethyl-3-methylimidazolium chloride (abbreviated by EMIM-Cl hereafter) were experimentally determined. A high pressure micro-differential scanning calorimeter equipped with a motorized pump was applied to measure the dissociation temperature of the (hydrate + liquid water + vapor) three-phase equilibrium under a constant pressure process with a pressure ranging from (5.0 to 35.0) MPa. The addition of EMIM-Cl would inhibit the methane hydrate formation. The most significant inhibition effect was observed at 0.4 mass fraction of EMIM-Cl in aqueous solution to lower the dissociation temperature by 12.82 K at 20.00 MPa in comparison to that of the (methane + water) system. The Peng–Robinson–Stryjek–Vera equation of state incorporated with COSMO-SAC activity coefficient model and the first order modified Huron–Vidal mixing rule were applied to evaluate the fugacity of vapor and liquid phase. A modified van der Waals and Platteeuw model with an explicit pressure dependence of the Langmuir adsorption constant was applied to determine the fugacity of hydrate phase. The predictive thermodynamic model successfully describes the tendency of phase behavior of methane hydrate in the presence of EMIM-Cl in the range from 0.1 to 0.4 mass fraction with absolute average relative deviation in predicted temperature of 0.70%.  相似文献   

19.
This study presents the influences of additional guest molecules such as C2H6, C3H8, and CO2 on methane hydrates regarding their thermal behavior. For this purpose, the onset temperatures of decomposition as well as the enthalpies of dissociation were determined for synthesized multicomponent gas hydrates in the range of 173-290 K at atmospheric pressure using a Calvet heat-flow calorimeter. Furthermore, the structures and the compositions of the hydrates were obtained using X-ray diffraction and Raman spectroscopy as well as hydrate prediction program calculations. It is shown that the onset temperature of decomposition of both sI and sII hydrates tends to increase with an increasing number of larger guest molecules than methane occupying the large cavities. The results of the calorimetric measurements also indicate that the molar dissociation enthalpy depends on the guest-to-cavity size ratio and the actual concentration of the guest occupying the large cavities of the hydrate. To our knowledge, this is the first study that observes this behavior using calorimetrical measurements on mixed gas hydrates at these temperature and pressure conditions.  相似文献   

20.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号