首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we mainly study the asymptotic behavior of solutions to the following problems ${\triangle u \pm a(x)| \nabla u|^{q} = b(x)f(u), x \in \Omega, \ u|_{\partial \Omega} = + \infty}$ , where Ω is a bounded domain with a smooth boundary in ${\mathbb{R}^{N} (N \geq 2)}$ , q >  0, ${a \in C^{\alpha}(\bar{\Omega})}$ is positive in Ω, and ${b \in C^{\alpha}(\bar{\Omega})}$ is nonnegative in Ω and may be vanishing on the boundary. We assume that f is Γ-varying at ∞, whose variation at ∞ is not regular. Our analysis is based on the sub-supersolution method and Karamata regular variation theory.  相似文献   

2.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

3.
Given a Lipschitz domain Ω in ${{\mathbb R}^N}$ and a nonnegative potential V in Ω such that V(xd(x, ?Ω)2 is bounded we study the fine regularity of boundary points with respect to the Schrödinger operator L V := Δ ? V in Ω. Using potential theoretic methods, several conditions are shown to be equivalent to the fine regularity of ${z \in \partial \Omega}$ . The main result is a simple (explicit if Ω is smooth) necessary and sufficient condition involving the size of V for ${z \in \partial \Omega}$ to be finely regular. An intermediate result consists in a majorization of ${\int_A \vert{\frac{ u} {d(.,\partial \Omega)}}\vert^2\, dx}$ for u positive harmonic in Ω and ${A \subset \Omega}$ . Conditions for almost everywhere regularity in a subset A of ?Ω are also given as well as an extension of the main results to a notion of fine ${\mathcal{ L}_1 \vert \mathcal{L}_0}$ -regularity, if ${\mathcal{L}_j = \mathcal{L} - V_j, V_0,\, V_1}$ being two potentials, with V 0 ≤ V 1 and ${\mathcal{L}}$ a second order elliptic operator.  相似文献   

4.
For a Dirac operator $D_{\bar{g}}$ over a spin compact Riemannian manifold with boundary $(\bar{X},\bar{g})$ , we give a new construction of the Calderón projector on $\partial\bar{X}$ and of the associated Bergman projector on the space of L 2 harmonic spinors on $\bar{X}$ , and we analyze their Schwartz kernels. Our approach is based on the conformal covariance of $D_{\bar{g}}$ and the scattering theory for the Dirac operator associated with the complete conformal metric $g=\bar{g}/\rho^{2}$ where ρ is a smooth function on $\bar{X}$ which equals the distance to the boundary near $\partial\bar{X}$ . We show that $\frac{1}{2}(\operatorname{Id}+\tilde{S}(0))$ is the orthogonal Calderón projector, where $\tilde{S}(\lambda)$ is the holomorphic family in {?(λ)≥0} of normalized scattering operators constructed in Guillarmou et al. (Adv. Math., 225(5):2464–2516, 2010), which are classical pseudo-differential of order 2λ. Finally, we construct natural conformally covariant odd powers of the Dirac operator on any compact spin manifold.  相似文献   

5.
In this paper we solve the ${\overline{\partial }}$ -problem along the leaves for two types of laminations: (i) Some open sets Ω of ${{\mathbb C}\times B}$ (where B is any differentiable manifold) endowed with the canonical foliation that is, the foliation whose leaves are the sections ${\Omega ^t=\{ z\in {\mathbb C}:(z,t)\in \Omega \}}$ . We construct a solution to the equation ${\overline{\partial }h=fd\overline z}$ for any function ${f:\Omega\longrightarrow {\mathbb C}}$ of class ${C^{s}\,(s\in \mathbb{N}\cup\{ \infty \}),\,C^\infty}$ along the leaves and satisfies some growth conditions near the singularities. (ii) A complex lamination by Riemann surfaces obtained by suspending a homeomorphism of a closed set of the Euclidean space ${\mathbb{C}\times \mathbb{R}}$ .  相似文献   

6.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

7.
Jamel Jaber 《Positivity》2014,18(1):161-170
Let $X$ be a lattice ordered algebra ( $\ell $ -algebra). A positive element $x\in $ $X$ is said to be totally bounded if $x^{2}\le x$ . The $\ell $ -algebra $X$ is said to have a $\sigma $ -bounded approximate unit if for each positive linear functional $f$ on $X$ the set $\left\{ f(x)\text{: } x \text{ totally } \text{ bounded }\right\} $ is bounded in $\mathbb R $ . In this paper we study the class of $f$ -algebras with a $\sigma $ -bounded approximate unit which contains the class of all unital $f$ -algebras. In particular It is shown that an $f$ -algebra $X$ has a $\sigma $ -bounded approximate unit if and only if the order bidual $X^{\sim \sim }$ is a unital $f$ -algebra.  相似文献   

8.
We consider the Dirichlet problem for biharmonic maps u from a bounded, smooth domain ${\Omega\subset\mathbb R^n (n\ge 5)}$ to a compact, smooth Riemannian manifold ${N\subset{\mathbb {R}}^l}$ without boundary. For any smooth boundary data, we show that if u is a stationary biharmonic map that satisfies a certain boundary monotonicity inequality, then there exists a closed subset ${\Sigma\subset\overline{\Omega}}$ , with ${H^{n-4}(\Sigma)=0}$ , such that ${\displaystyle u\in C^\infty(\overline\Omega\setminus\Sigma, N)}$ .  相似文献   

9.
In this paper, we give non-existence theorems for Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C }^{m+2})$ with $\mathfrak D $ -parallel normal Jacobi operator ${\bar{R}}_N$ and $\mathfrak D $ -parallel structure Jacobi operator $R_{\xi }$ if the distribution $\mathfrak D $ or $\mathfrak D ^{\bot }$ component of the Reeb vector field is invariant by the shape operator, respectively.  相似文献   

10.
11.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

12.
We provide two sharp sufficient conditions for immersed Willmore surfaces in $\mathbb{R }^3$ to be already minimal surfaces, i.e. to have vanishing mean curvature on their entire domains. These results turn out to be particularly suitable for applications to Willmore graphs. We can therefore show that Willmore graphs on bounded $C^4$ -domains $\overline{\varOmega }$ with vanishing mean curvature on the boundary $\partial \varOmega $ must already be minimal graphs, which in particular yields some Bernstein-type result for Willmore graphs on $\mathbb{R }^2$ . Our methods also prove the non-existence of Willmore graphs on bounded $C^4$ -domains $\overline{\varOmega }$ with mean curvature $H$ satisfying $H \ge c_0>0 \,{\text{ on }}\, \partial \varOmega $ if $\varOmega $ contains some closed disc of radius $\frac{1}{c_0} \in (0,\infty )$ , and they yield that any closed Willmore surface in $\mathbb{R }^3$ which can be represented as a smooth graph over $\mathbb{S }^2$ has to be a round sphere. Finally, we demonstrate that our results are sharp by means of an examination of some certain part of the Clifford torus in $\mathbb{R }^3$ .  相似文献   

13.
The regularity of the $\overline{\partial }$ -problem on the domain $\{\left|{z_1}\right|\!<\!\left|{z_2}\right|\!<\!1\}$ in $\mathbb C ^2$ is studied using $L^2$ -methods. Estimates are obtained for the canonical solution in weighted $L^2$ -Sobolev spaces with a weight that is singular at the point $(0,0)$ . In particular, the singularity of the Bergman projection for the Hartogs triangle is contained at the singular point and it does not propagate.  相似文献   

14.
We consider the pseudo-euclidean space ${(\mathbb{R}^n, g)}$ , with n ≥  3 and ${g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}$ and tensors of the form ${T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}$ . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric ${\bar{g}}$ , conformal to g, so that ${A_{\bar g}=T}$ , where ${A_{\bar g}}$ is the Schouten Tensor of the metric ${\bar g}$ . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric ${\bar g}$ is complete on ${\mathbb{R}^n}$ . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics ${\bar g}$ , conformal to g, such that ${\sigma_2 ({\bar g })}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}$ is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics ${\bar{g} = g/{\varphi^2}}$ , such that ${\sigma_2 ({\bar g }) = f_1}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}$ .  相似文献   

15.
Let $\mathcal{V }$ be a complete discrete valuation ring of mixed characteristic with perfect residue field. Let $X$ be a geometrically connected smooth proper curve over $\mathcal{V }$ . We introduce the notion of constructible convergent $\nabla $ -module on the analytification $X_{K}^{\mathrm{an}}$ of the generic fiber of $X$ . A constructible module is an $\mathcal{O }_{X_{K}^{\mathrm{an}}}$ -module which is not necessarily coherent, but becomes coherent on a stratification by locally closed subsets of the special fiber $X_{k}$ of $X$ . The notions of connection, of (over-) convergence and of Frobenius structure carry over to this situation. We describe a specialization functor from the category of constructible convergent $\nabla $ -modules to the category of $\mathcal{D }^\dagger _{\hat{X} \mathbf{Q }}$ -modules. We show that specialization induces an equivalence between constructible $F$ - $\nabla $ -modules and perverse holonomic $F$ - $\mathcal{D }^\dagger _{\hat{X} \mathbf{Q }}$ -modules.  相似文献   

16.
For K and L two $\ell $ -adic perverse sheaves on the one-dimensional torus ${\mathbb{G }_{m,\bar{k}}}$ over the algebraic closure of a finite field, we show that the local monodromies of their convolution $K*L$ at its points of non-smoothness is completely determined by the local monodromies of K and L. We define local convolution bi-exact functors $\rho _{(s,t)}^{(u)}$ for every $s,t,u\in \mathbb{P }^1_{\bar{k}}$ that map continuous $\ell $ -adic representations of the inertia groups at s and t to a representation of the inertia group at u, and show that the local monodromy of $K*L$ at u is the direct sum of the $\rho _{(s,t)}^{(u)}$ applied to the local monodromies of K and L. This generalizes a previous result of Katz for the case where K and L are smooth, tame at 0 and totally wild at infinity. As a corollary we obtain an estimate for some exponential sums associated to homothety invariant polynomials.  相似文献   

17.
Let $\mathrm{A }$ be a finitely generated semigroup with 0. An $\mathrm{A }$ -module over $\mathbb F _1$ (also called an $\mathrm{A }$ -set), is a pointed set $(M,*)$ together with an action of $\mathrm{A }$ . We define and study the Hall algebra $\mathbb H _{\mathrm{A }}$ of the category $\mathcal C _{\mathrm{A }}$ of finite $\mathrm{A }$ -modules. $\mathbb H _{\mathrm{A }}$ is shown to be the universal enveloping algebra of a Lie algebra $\mathfrak n _{\mathrm{A }}$ , called the Hall Lie algebra of $\mathcal C _{\mathrm{A }}$ . In the case of $\langle t \rangle $ —the free monoid on one generator $\langle t \rangle $ , the Hall algebra (or more precisely the Hall algebra of the subcategory of nilpotent $\langle t \rangle $ -modules) is isomorphic to Kreimer’s Hopf algebra of rooted forests. This perspective allows us to define two new commutative operations on rooted forests. We also consider the examples when $\mathrm{A }$ is a quotient of $\langle t \rangle $ by a congruence, and the monoid $G \cup \{ 0\}$ for a finite group $G$ .  相似文献   

18.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

19.
20.
If there exist a smooth function f on $(M^n, g)$ and three real constants $m,\rho ,\lambda $ ( $0<m\le \infty $ ) such that $$\begin{aligned} R_{ij}+f_{ij}-\frac{1}{m}f_if_j=(\rho R+\lambda ) g_{ij}, \end{aligned}$$ we call $(M^n,g)$ a $(m,\rho )$ -quasi-Einstein manifold. Here $R_{ij}$ is the Ricci curvature and R is the scalar curvature of the metric g, respectively. This is a special case of the so-called generalized quasi-Einstein manifold which was a natural generalization of gradient Ricci solitons associated with the Hamilton’s Ricci flow. In this paper, we first obtain some rigidity results for compact $(m,\rho )$ -quasi-Einstein manifolds. Then, we give some classifications under the assumption that the Bach tensor of $(M^n,g)$ is flat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号